FOR
BELVIDERE MUNICIPAL LANDFILL #2
BELVIDERE, ILLINOIS
U.S. EPA ID: ILDO00605113
SS ID: NONE
TDD: F05-8902-021
PAN: FIL0584SA

1 1

MARCH 22, 1990

ecology and environment, inc.

111 WEST JACKSON BLVD., CHICAGO, ILLINOIS 60604, TEL. 312-663-9415 International Specialists in the Environment

moveded parties

SIGNATURE PAGE
FOR

SCREENING SITE INSPECTION REPORT
FOR

BELVIDERE MUNICIPAL LANDFILL #2
BELVIDERE, ILLINOIS
U.S. EPA ID: ILD000605113
SS ID: NONE
TDD: F05-8902-021

PAN: FILO584SA

Prepared by: Lum Mander for William Regich

FIT Team Leader
Ecology and Environment, Inc.

Reviewed by: Regina Bayer
Regina Bayer
FIT Unit Manager
Ecology and Environment, Inc.

Approved by: Athlend State of Date: 3/33/90

Jerome D. Oskvarek
FIT Office Manager
Ecology and Environment, Inc.

TABLE OF CONTENTS

Section	<u> </u>	Page
1	INTRODUCTION	1-1
2	SITE BACKGROUND	2-1
	2.1 INTRODUCTION	2-1
	2.2 SITE DESCRIPTION	2-1
	2.3 SITE HISTORY	2-1
3	SCREENING SITE INSPECTION PROCEDURES AND FIELD	
	OBSERVATIONS	3-1
	3.1 INTRODUCTION	3-1
	3.2 SITE REPRESENTATIVE INTERVIEW	3-1
	3.3 RECONNAISSANCE INSPECTION	3-2
	3.4 SAMPLING PROCEDURES	3-5
4	ANALYTICAL RESULTS	4-1
	4.1 INTRODUCTION	4-1
	4.2 RESULTS OF CHEMICAL ANALYSIS OF FIT-	
	COLLECTED SAMPLES	4-1
5	DISCUSSION OF MIGRATION PATHWAYS	5-1
	5.1 INTRODUCTION	5-1
	5.2 GROUNDWATER	5-1
	5.3 SURFACE WATER	5-4
	5.4 AIR	5-4
	5.5 FIRE AND EXPLOSION	5-4
	5.6 DIRECT CONTACT	5-5
6	BIBLIOGRAPHY	6-1

Table of Contents (Cont.)

Appendix		Page
A	SITE 4-MILE RADIUS MAP	A-1
В	U.S. EPA FORM 2070-13	B-1
С	FIT SITE PHOTOGRAPHS	C-1
D	U.S. EPA TARGET COMPOUND LIST AND TARGET ANALYTE LIST QUANTITATION/DETECTION LIMITS	D-1
E	WELL LOGS OF THE AREA OF THE SITE	E-1

LIST OF FIGURES

Figure		Page
2-1	Site Location	2-2
3-1	Site Features	3-3
3-2	Soil Sampling Locations	3-6
3-3	Monitoring Well Sampling Locations	3-8
3-4	Residential Well Sampling Locations	3-11

LIST OF TABLES

Table		Page
3–1	Elevation, Well Depth, and Water Level of Monitoring Wells	3-10
3–2	Addresses of Residential Well Sampling Locations	3-13
4-1	Results of Chemical Analysis of FIT-Collected Soil Samples	4-3
4-2	Results of Chemical Analysis of FIT-Collected Monitoring Well Samples	4-6
4-3	Results of Chemical Analysis of FIT-Collected Residential Well Samples	4-9

1. INTRODUCTION

Ecology and Environment, Inc., Field Investigation Team (FIT) was tasked by the United States Environmental Protection Agency (U.S. EPA) to conduct a screening site inspection (SSI) of the Belvidere Municipal Landfill #2 (BML) site under contract number 68-01-7347.

The site was initially discovered by U.S. EPA through a Notification of Hazardous Waste Site form filed, pursuant to section 103(c) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, by Apache Foam Products of Belvidere, Illinois, on June 6, 1981. The site was evaluated in the form of a preliminary assessment (PA) that was submitted to U.S. EPA. The PA was prepared by Larry Winner of the Illinois Environmental Protection Agency (IEPA) on July 15, 1983 (IEPA 1983).

FIT prepared an SSI work plan for the BML site under technical directive document (TDD) F05-8706-015, issued on June 5, 1987. The SSI work plan was approved by U.S. EPA on February 24, 1989. The SSI of the BML site was conducted on March 21, 1989, under TDD F05-8902-021, issued on February 27, 1989.

The FIT SSI included an interview with site representatives, a reconnaissance inspection of the site, and the collection of seven soil samples, three residential well samples, and three monitoring well samples.

The purposes of an SSI have been stated by U.S. EPA in a directive outlining Pre-Remedial Program strategies. The directive states:

All sites will receive a screening SI to 1) collect additional data beyond the PA to enable a more refined preliminary HRS [Hazard Ranking System] score, 2) establish priorities among sites most likely to qualify for the NPL [National Priorities List], and 3) identify the most critical data requirements for the listing SI step. A screening SI will not have rigorous data quality objectives (DQOs). Based on the refined preliminary HRS score and other technical judgement factors, the site will then either be designated as NFRAP [no further remedial action planned], or carried forward as an NPL listing candidate. A listing SI will not automatically be done on these sites, however. First, they will go through a management evaluation to determine whether they can be addressed by another authority such as RCRA [Resource Conservation and Recovery Act].... Sites that are designated NFRAP or deferred to other statutes are not candidates for a listing SI.

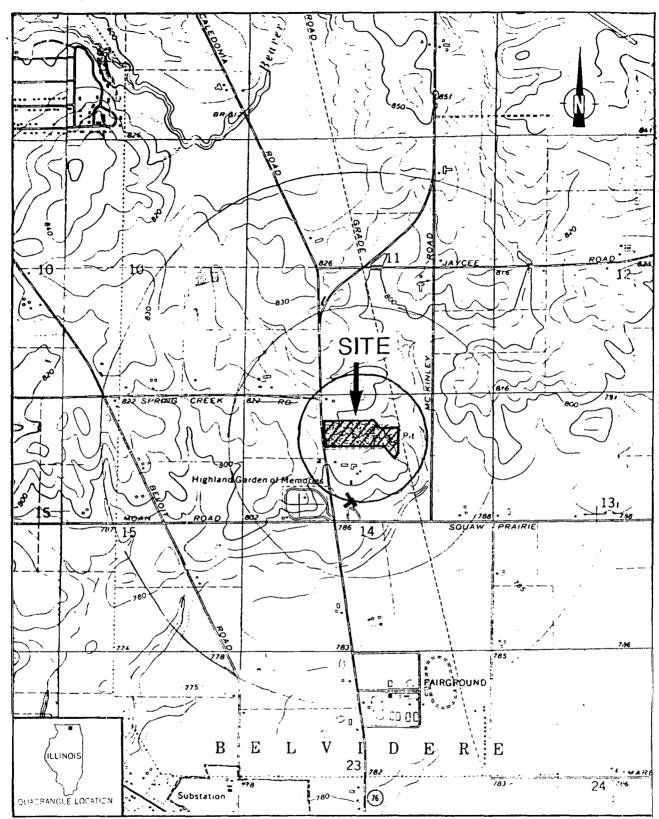
The listing SI will address all the data requirements of the revised HRS using field screening and NPL level DQOs. It may also provide needed data in a format to support remedial investigation work plan development. Only sites that appear to score high enough for listing and that have not been deferred to another authority will receive a listing SI. (U.S. EPA 1988)

U.S. EPA Region V has also instructed FIT to identify sites during the SSI that may require removal action to remediate an immediate human health or environmental threat.

SITE BACKGROUND

2.1 INTRODUCTION

This section includes information obtained from SSI work plan preparation, the site representative interview, and a reconnaissance inspection of the site.


2.2 SITE DESCRIPTION

The BML site is an active landfill that currently accepts municipal refuse from the residents of Boone County, Illinois, and local manufacturers from the city of Belvidere, Illinois. The site is located on approximately 34 acres of land 2 miles north of Belvidere, in Boone County (S1/2NW1/4NE1/4 and S1/2NE1/4NW1/4 sec. 14, T.44N., R.3E.), east of Illinois Route 76 (see Figure 2-1). A 4-mile radius map of the BML site is provided in Appendix A.

2.3 SITE HISTORY

The BML property is currently owned jointly by the City of Belvidere and Boone County, and is operated by Milt Anderson, Inc., of Poplar Grove, Illinois. Prior to 1974, the county was the sole owner of the site, operating a county poor farm and nursing home on the property. The actual date of the county's acquisition of the property is unknown, but is estimated to have been between 1944 and 1954 (Klint et al. 1989).

Landfill operations at the BML site began in 1974, with a series of several companies operating the landfill prior to its operation by Milt Anderson, Inc. When the BML site was first opened, it accepted municipal and industrial waste from Boone County and some wastes from

SOURCE: Ecology and Environment, Inc. 1990; BASE MAPS: USGS, Caledonia, IL Quadrangle, 7.5 Minute Series, 1975; USGS, Cherry Valley, IL Quadrangle, 7.5 Minute Series, 1975; Belvidere North, IL Quadrangle, 7.5 Minute Series, 1978.

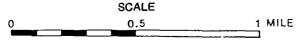


FIGURE 2-1 SITE LOCATION

other counties. Apache Foam Products disposed of amides, amines, imides, and resins at the BML site from 1974 to 1979 (U.S. EPA 1981). The BML site currently accepts wastes only from Boone County. Waste currently accepted at the site consists of approximately 80% municipal waste and 20% industrial waste. The specific industrial wastes currently accepted are city of Belvidere Sewage Treatment Plant sludge, foundry sand from Moline Corporation, and boiler cinders from Chrysler Corporation (Klint et al. 1989). The BML site does not currently accept waste from Apache Foam Products (U.S. EPA 1981).

The method of landfilling at the site consists of filling cells 20 feet wide by 8 to 12 feet high. In the past, the cells were also excavated to a depth of 20 feet before landfilling. IEPA later advised the city to remove only the topsoil before landfilling because of the proximity of the water table to the surface. Current practice at the landfill is the removal of topsoil only, with waste materials being deposited directly on the clay layer until the landfill's final elevation of approximately 856 feet above sea level has been reached (Eldredge Engineering Associates, Inc. [Eldredge Engineering] 1986).

After the refuse is hauled to a designated cell of the landfill, a minimum of 6 inches of cover material is applied at the end of each day, or a minimum of 12 inches of cover material is applied if no refuse is to be placed in that cell within 2 months. The cells are filled in a west-to-east direction (Eldredge Engineering 1986).

The landfill is constructed over natural till material and has no liner or leachate collection system between the refuse and the natural till material. An attempt to recover methane gas for energy was discontinued, because the landfill produced methane in quantities too small for the process to be cost efficient (Klint et al. 1989). A portion of the landfill is at its final elevation, but is not yet capped. Another area is capped with a final cover, which consists of a minimum of 2 feet of compacted clay with a minimum of 6 inches of topsoil covering it. The expected life of the landfill is 18 years; it is projected to be completely full in 1992 (Klint et al. 1989).

The BML site is open 6 days per week; Boone County residents bring waste to the site for disposal during its hours of operation. The annual volumes of waste accepted for 1987 and 1988 were approximately

31,500 cubic yards and 33,000 cubic yards, respectively (Klint et al. 1989).

According to site representatives, IEPA has cited the BML site for litter problems and for inadequate daily cover. In addition, on June 2, 1981, IEPA conducted an inspection of the BML site and discovered leachate seeps east of the landfill's active area. The site was also discovered to be in violation of supplemental permit no. 790811, which states that foundry sand will not be stockpiled before December 1 or after March 31 (IEPA 1981). According to a routine inspection report prepared by IEPA for the BML site on December 22, 1981, leachate seeps were still in evidence at the site (IEPA 1981a).

According to site representatives, no regulatory-related action is currently taking place at the BML site.

3. SCREENING SITE INSPECTION PROCEDURES AND FIELD OBSERVATIONS

3.1 INTRODUCTION

This section outlines procedures and observations of the SSI of the BML site. Individual subsections address the site representative interview, reconnaissance inspection, and sampling procedures. Rationales for specific FIT activities are also provided. The SSI was conducted in accordance with the U.S. EPA-approved work plan, with the following exceptions. Because of a lack of available wells in the area, three residential wells were sampled instead of the proposed four, and three monitoring wells were sampled instead of the proposed five. Two of the five monitoring wells proposed for sampling had been abandoned.

The U.S. EPA Potential Hazardous Waste Site Inspection Report (Form 2070-13) for the BML site is provided in Appendix B.

3.2 SITE REPRESENTATIVE INTERVIEW

William Perpich, FIT team leader, conducted an interview with Craig Lawler, city of Belvidere Director of Public Works; Fred Winterroth, Belvidere County Board Member; Ken Terrinoni, Belvidere Administrative Coordinator; Carol Klint, Boone County Health Administrator; and Pat Murphy, city of Belvidere Alderman. The interview took place at the Department of Public Works Building on March 20, 1989, at 1:30 p.m. Regina Bayer of FIT was also present during the interview. The interview was conducted to gather information that would aid FIT in conducting SSI activities.

3.3 RECONNAISSANCE INSPECTION

Following the site representative interview, FIT conducted a reconnaissance inspection of the BML site and surrounding area in accordance with Ecology and Environment, Inc. (E & E), health and safety guidelines. The reconnaissance inspection included a walk-through of the site to determine appropriate health and safety requirements for conducting on-site activities and to make observations to aid in characterizing the site. FIT also determined exact sampling locations during the reconnaissance inspection.

The reconnaissance inspection began on March 21, 1989, at 9:00 a.m. Brent Anderson, Assistant to the Director of Public Works, arrived at the site before the reconnaissance inspection began, but did not accompany FIT during the walk-through.

Reconnaissance Inspection Observations. The BML site is located approximately 2 miles north of the city of Belvidere, Illinois. The roads in the area surrounding the BML site are Jaycee Road, running east-west approximately 3/4 miles north of the site; McKinley Road, running north-south approximately 800 feet east of the site; Squaw Prairie Road, running east-west approximately 1,700 feet south of the site; and Illinois Route 76, running north-south approximately 50 feet west of the site. An access road from Route 76 follows the southern boundary of the site, ending approximately 300 feet from the southeast corner of the landfill. South of the access road, adjacent to Route 76, are the Boone County Highway Department, located approximately 75 feet south of the site, and the Boone County Nursing Home, approximately 1,200 feet south of the site. Farm fields border the site on the north, east, and west. The terrain surrounding the site is relatively flat, with a gradual slope from north to south.

The landfill is approximately 2,000 feet long and 1,250 feet wide at its maximum width (see Figure 3-1 for locations of site features). The capped portion of the landfill is located on the west end of the site and extends 500 feet east. A second portion of the landfill is at its finished elevation but is uncapped. This area extends east 1,000 feet from the end of the capped area. The capped area was closed in 1988, and the uncapped area is expected to be completely closed in 1989 (Klint et al. 1989). The active fill area begins approximately 1,500

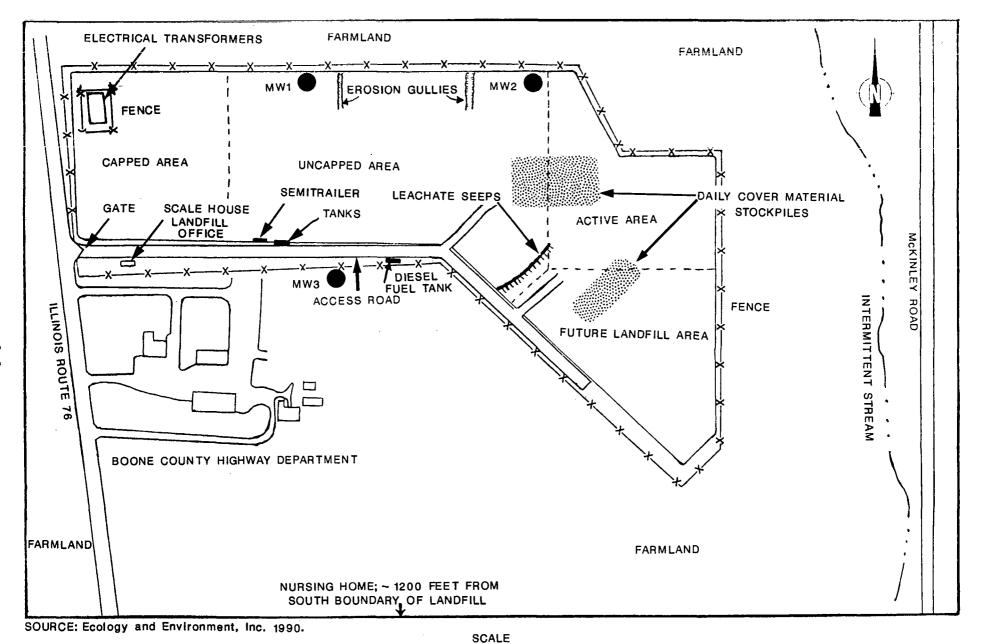


FIGURE 3-1 SITE FEATURES

100 200 300 FEET

feet east of the landfill's western edge and extends 600 feet south of the northern edge of the landfill. The area designated for future landfilling extends from 600 feet south to 1,250 feet south of the northern boundary and from 1,400 feet to 2,000 feet east of the western boundary of the landfill. The topography of the completed portion of the landfill slopes 20% to its final elevation along the perimeter face and has a 2% slope on its top surface (Eldredge Engineering 1986). The natural topography of the future landfill area has an approximate slope of 2.5% from west to east (USGS 1975).

A sign is posted at the entrance to the site stating the hours the landfill is open (Monday through Friday 8:00 a.m. to 3:30 p.m.; Saturday 8:00 a.m. to noon). The site is entirely fenced and has a locked gate across the access road.

A landfill office/scale house is located between the access road and the southern site border, approximately 100 feet east of the Route 76 entrance. An abandoned semitrailer, used for storage, and a discarded underground storage tank were observed just north of the access road along the southern edge of the landfill. A discarded diesel fuel storage tank is located south of the access road. The landfill office/scale house is located on the access road, approximately 300 feet east of Route 76. An inactive electrical step-up transformer, part of the discontinued methane collection system (Klint et al. 1989), is located in the northwest corner of the landfill. The transformer stands on a concrete slab, surrounded by a fence.

Along the north slope of the capped area of the landfill, several erosion gullies were observed, although no refuse was exposed. On the eastern half of the north slope FIT observed stained soil at the bottom of some erosion gullies. Approximately 765 feet east of the western boundary of the landfill, near the northern boundary of the landfill, FIT detected methane readings above background in the breathing zone, using an OVA 128 equipped with a charcoal filter. These readings were recorded in the vicinity of the abandoned methane collection pipes.

Two stockpiles of daily cover material were observed in the active area of the landfill. The first was located in the west-central portion of the active landfill area and the second was located at the north end

of the future landfill area. A line of leachate seeps was observed in the southeast corner of the uncapped area.

East of the landfill FIT observed an intermittent stream. According to a United States Geological Survey (USGS) topographic map, the stream flows south to the Kishwaukee River (USGS 1978). No water was observed in the stream at the time of the SSI.

Scattered litter was observed throughout the farm fields adjoining the BML site. Photographs of the BML site are provided in Appendix C.


3.4 SAMPLING PROCEDURES

Samples were collected by FIT at locations selected during the reconnaissance inspection to determine whether U.S. EPA Target Compound List (TCL) compounds and U.S. EPA Target Analyte List (TAL) analytes were present at the site. The TCL and TAL, with corresponding quantitation/detection limits, are provided in Appendix D.

On March 21, 1989, FIT collected six surface soil samples, one potential background soil sample, and two monitoring well samples, MW2 and MW3. On March 22, 1989, FIT collected three residential well samples and one monitoring well sample, MW1. Portions of the soil samples were offered to the site representatives, but they were declined.

Soil Sampling Procedures. Soil sample S1 was collected approximately 800 feet east of the western boundary of the site, below an erosion gully (see Figure 3-2 for soil sampling locations). Soil sample S2 was collected near the northeast corner of the uncapped area of the landfill. Soil sample S3 was collected along the south slope of the landfill, approximately 700 feet east of the site's western boundary. Soil sample S4 was collected in the area of the leachate seeps, southwest of the active fill area. Soil sample S5 was collected along the east-facing slope of the active fill area. Soil sample S6 was collected along the west-facing slope of the capped area of the landfill. Sampling locations for samples S1 through S6 were chosen to determine whether TCL compounds and/or TAL analytes are present at the BML site.

Soil samples were collected using a hand trowel and placed in a stainless steel bowl. Each sample was then transferred with a trowel to

SOURCE: Ecology and Environment, Inc. 1990.

FIGURE 3-2 SOIL SAMPLING LOCATIONS

sample bottles. The portions of the samples to be analyzed for volatile organics were collected first (E & E 1987).

A potential background sample (indicated as S7) was collected near the boundary of a farm field north of the site, at the southeast corner of the intersection between Route 76 and Woodstock Road. The potential background soil sample was collected to determine the representative chemical content of the soil in the area surrounding the site. The location was chosen because the ground surface appeared to be in an undisturbed state.

Standard E & E decontamination procedures were adhered to during the collection of all soil samples. The procedures included the scrubbing of all equipment (e.g., trowels, bowls, and spoons) with a solution of Alconox detergent and distilled water, and triple-rinsing the equipment with distilled water before the collection of each sample (E & E 1987). All soil samples were packaged and shipped in accordance with U.S. EPA-required procedures.

As directed by U.S. EPA, all soil samples were analyzed under the U.S. EPA Contract Laboratory Program (CLP) for TCL compounds by PEI Associates, Inc., of Cincinnati, Ohio, and for TAL analytes by Keystone Environmental Resources of Houston, Texas.

Monitoring Well Sampling Procedures. Three monitoring well samples (indicated as MW1, MW2, and MW3) were collected to determine whether TCL compounds and/or TAL analytes had migrated from the site into ground—water. Sample MW1 was collected at a well labeled G103 by the City of Belvidere. The well was Non-responsive of the landfill (see Figure 3-3 for monitoring well sampling locations). Sample MW2 was collected at a well (labeled G102 by the City of Belvidere)

Non-responsive . Sample MW3 was collected at a well (labeled G110 by the City of Belvidere)

While venting MW2, FIT detected elevated readings of methane with the OVA 128. FIT also observed that MW3 did not have a cap fitting onto the polyvinyl chloride (PVC) casing of the well and that the cover over the well was not locked. FIT noticed an odor at MW3 upon venting the well, although no readings were detected with the OVA 128.

SOURCE: Ecology and Environment, Inc. 1990.

FIGURE 3-3 MONITORING WELL SAMPLE LOCATIONS

Five times the standing volume of water was purged from MW2 and MW3 before sampling. MW1 was purged dry before five times the standing volume of water could be removed. There was very little recharge in MW1, so the well was sampled on the following day. At this time, sufficient water was present for the collection of the volatile organic and analyte portions of the sample only. Table 3-1 lists well elevation, depth, and water level for each monitoring well sampled.

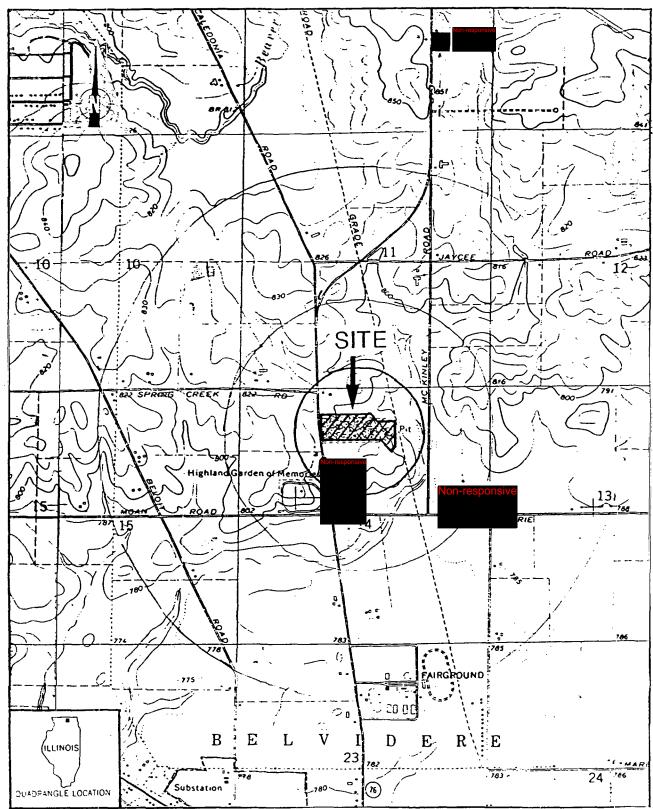
All wells were purged and sampled with stainless steel bailers attached to dedicated nylon rope. The bailers used were washed with Alconox detergent and distilled water, and triple-rinsed with distilled water (E & E 1987). A duplicate monitoring well sample was collected at MW3, and a field blank was also collected for each day that monitoring well samples were collected (blank 1 and blank 2). All samples were collected in accordance with U.S. EPA quality assurance/quality control (QA/QC) requirements. All monitoring well samples were packaged and shipped in accordance with U.S. EPA-required procedures.

As directed by U.S. EPA, all monitoring well samples were analyzed under the U.S. EPA CLP for TCL compounds by PEI Associates, Inc., of Cincinnati, Ohio, and for TAL analytes by Keystone Environmental Resources of Houston, Texas.

Residential Well Sampling Procedures. Residential well samples (indicated as RW1, RW2, and RW3) were collected to determine whether TCL compounds and/or TAL analytes had migrated from the site to groundwater in the vicinity of the site.

The residential well sampling locations were chosen because of their proximity to the site and their availability for sampling (see Figure 3-4 for residential well sampling locations). Sample RW1 was collected from a well with a depth of 500 feet, on the grounds of the Boone County Nursing Home, Non-responsive

. Sample RW2 was collected at a residence on McKinley Road, approximately Non-responsive . The depth of this well is unknown. Sample RW3 was collected at a residence on Squaw Prairie Road, Non-responsive , from a well with a depth of approximately 50 feet. A duplicate residential well sample was also collected in accordance with U.S. EPA QA/QC requirements. The


Table 3-1

ELEVATION, WELL DEPTH, AND WATER LEVEL OF MONITORING WELLS

Well Sampled	Elevation * (feet)	Well Depth (feet from top of casing)	Water Level (feet from top of casing)
MW1	769.00	39.20	26.70
MW2	765.69	31.00	23.31
MW3	768.15	53.00	39.85

Well depth and water level were determined by FIT during the site inspection.

^{*} Approximate well elevations are derived from a boring location diagram (Layne-Western Company, Inc. no date).

SOURCE: Ecology and Environment, Inc. 1990; BASE MAPS: USGS, Caledonia, IL Quadrangle, 7.5 Minute Series, 1975; USGS, Cherry Valley, IL Quadrangle, 7.5 Minute Series, 1975; Belvidere North, IL Quadrangle, 7.5 Minute Series, 1975; Belvidere South, IL Quadrangle, 7.5 Minute Series, 1978.

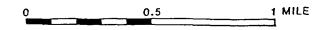


FIGURE 3-4 RESIDENTIAL WELL SAMPLING LOCATIONS

duplicate sample was collected at RW1 (see Table 3-2 for addresses of residential well sampling locations).

All residential well samples were obtained from outlets that bypassed water treatment systems and/or storage tanks. The water was allowed to discharge from the outlets for 15 minutes before samples were collected to insure that the sample sources had been purged of standing water (E & E 1987). All residential well samples were packaged and shipped in accordance with U.S. EPA-required procedures.

As directed by U.S. EPA, all residential well samples were analyzed under the U.S. EPA CLP for TCL compounds by CompuChem Laboratories of Research Triangle Park, North Carolina, and for TAL analytes by Versar, Inc., of Springfield, Virginia.

Table 3-2

ADDRESSES OF RESIDENTIAL WELL SAMPLING LOCATIONS

Sample	Address
Non-responsive	

4. ANALYTICAL RESULTS

4.1 INTRODUCTION

This section includes results of chemical analysis of FIT-collected soil samples and monitoring and residential well samples for TCL compounds and TAL analytes.

4.2 RESULTS OF CHEMICAL ANALYSIS OF FIT-COLLECTED SAMPLES

<u>Soil Samples</u>. Chemical analysis of FIT-collected soil samples revealed substances from the following groups of TCL compounds and TAL analytes: halogenated hydrocarbons, polyaromatic hydrocarbons (PAHs), aromatics, ketones, sulphur hydrocarbons, common laboratory artifacts (methylene chloride and di-n-butylphthalate), heavy metals, and common soil constituents (see Table 4-1 for complete soil sample chemical analysis results).

Monitoring Well Samples. Chemical analysis of FIT-collected monitoring well samples revealed substances from the following groups of TCL compounds and TAL analytes: halogenated hydrocarbons, aromatics, sulphur hydrocarbons, common laboratory artifacts (methylene chloride and acetone), heavy metals, and common soil constituents (see Table 4-2 for complete monitoring well sample chemical analysis results).

<u>Residential Well Samples</u>. Chemical analysis of FIT-collected residential well samples revealed substances from the following groups of TCL compounds and TAL analytes: PAHs, heavy metals, and common soil constituents (see Table 4-3 for complete residential well sample chemical analysis results).

U.S. EPA CLP quantitation/detection limits used in the analysis of FIT-collected soil, monitoring well, and residential well samples are provided in Appendix D.

Table 4-1
RESULTS OF CHEMICAL ANALYSIS OF
FIT-COLLECTED SOIL SAMPLES

Sample Collection Information				Sample Numbe	<u>r</u>		
and Parameters	S1	S2	S 3	S4	S 5	S 6	S 7
Date	3/21/89	3/21/89	3/21/89	3/21/89	3/21/89	3/21/89	3/21/89
Time	1155	1215	1440	1500	1530	1615	1640
CLP Organic Traffic Report Number	EW171	EW172	EW173	EW174	EW175	EW176	EW17
CLP Inorganic Traffic Report Number	MEW9 8 2	MEW983	MEW984	MEW985	MEW986	MEW987	MEW98
Compound Detected							
(values in μg/kg)							
Volatile Organics							
chloroethane				31			
methylene chloride	76B			210B			
acetone				7,800JD			
carbon disulfide				8			
l,1-dichloroethane				250			
2-butanone (MEK)				4,200JD			
1,1,1-trichloroethane				260JD			
carbon tetrachloride				29			
benzene				4 J			
2-hexanone				490JD			
tetrachloroethene		13B					
coluene				220			
ethylbenzene	~~			46	-~		
styrene				15			
xylenes (total)				85			
Semivolatile Organics							
fluorene		92ј					
phenanthrene	~-	760 J	290Ј		723		
anthracene		1/0Ј					-
di-n-butylphthalate	120Ј	110Ј			110Ј	90Ј	

Table 4-1 (Cont.)

Sample Collection Information				Sample Number	<u>r</u>		
and Parameters	s1	S2	S 3	S4	s5	S6	\$7
Semivolatile Organics						·,	
fluoranthene	55J	1,100	500J				
pyrene			400JB				
benzo[a]anthracene	 -	430J	200J				
chrysene		530J	250Ј				
benzo[b]fluoranthene		360J					
benzo[k]fluoranthene	~-	400J					
oenzo[a]pyrene		450J	150Ј				
indeno[1,2,3-cd]pyrene	~-	240J					
benzo[g,h,i]perylene		250Ј					
Pesticides/PCBs							
Heptachlor epoxide							27
Analyte Detected							
(values in mg/kg)							
aluminum	8,120	8,050	5,750	9,830	8,560	6,620	7,860
arsenic	7.3JN	3.6JN	3.3JN	3.4JN	4.3JN	2.9JN	4.2JN
parium	209	111	50.1B	68.5	111	103	109
peryllium	0.49B	0.48ЈВ	0.38ЈВ	0.46JB	0.54JB	0.49JB	0.52JE
cadmium		4.1N*					
calcíum	35,000	18,400	37,000	61,500	8,530	8,550	16,000
chromium	13.3	16.9	12.1	14.5	10.7	9.0	12
cobalt	9.3JBN	10.2JBN	6.3JBN	7JBN	10.1JBN	6.6JBN	8JBN
copper	22.7	12.2J	9.1J	9.4J	9.5J	8.6J	11.8J
ron	26,600	14,900	15,500	18,200	14,200	11,600	15,200
lead	25.6JN	29.8JN	18JN	82.5JN+	16.6JN	8.2JN	27.7JN
nagnesium	7,670	9,520	16,000	18,900	5,420	4,560	9,770
nanganese	1,610	786	316	376	775	658	603
nickel	21.7	17.4	15.2	17.3	12.7	10.2	17.6
ootassium	1,450B	992B	1,040B	2,060	441B	896B	543B
sodium	339B	1048	213B	303B	137B	52.2B	73.2B
anadium	26.9	24.4	18.4	26.6	23.3	20.7	25.7
zinc	125	94.6		746	56.3	55.1	50.9

⁻⁻ Not detected.

Table 4-1 (Cont.)

COMPOUND QUALIFIERS	DEFINITION	INTERPRETATION
J	Indicates an estimated value.	Compound value may be semiquantitative.
В	This flag is used when the compound is found in the associated blank as well as in the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.	Compound value may be semiquantitative if it is <5x the blank concentration (<10x the blank concentrations for common laboratory artifacts: phthalates, methylene chloride, acetone, toluene, 2-butanone).
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.	Alerts data user to a possible change in the CRQL. Data is quantitative.
ANALYTE QUALIFIERS	DEFINITION	INTERPRETATION
N	Spike recoveries outside QC protocols, which indicates a possible matrix problem. Data may be biased high or low. See spike results and laboratory narrative.	Value may be quantitative or semi- quantitative.
*	Duplicate value outside QC protocols which indicates a possible matrix problem.	Value may be quantitative or semi- quantitative.
+	Correlation coefficient for standard additions is less than 0.995. See review and laboratory narrative.	Data value may be biased.
В	Value is real, but is above instrument DL and below CRDL.	Value may be quantitative or semi- quantitative.
J	Value is above CRDL and is an estimated value because of a QC protocol.	Value may be semiquantitative.

Table 4-2
RESULTS OF CHEMICAL ANALYSIS OF
FIT-COLLECTED MONITORING WELL SAMPLES

Sample Collection Information			Sampl	e Number		
and Parameters	MW1	MW2	MW3	Duplicate	Blank 1	Blank 2
Date	3/22/89	3/21/89	3/21/89	3/21/89	3/21/89	3/22/89
Cime	0930	1250	1530	1530	1700	1115
CLP Organic Traffic Report Number	EW1 79	EW181	EW182	EW180	EW183	EW184
LP Inorganic Traffic Report Number	MEDA98	MEW990	MEW991	MEW989	MEW992	MEW993
Cemperature (°C)	*	10.0	6.0	6.0	9.0	9.0
Specific Conductivity (#mhos/cm)	*	350	350	350	0	0
Compound Detected						
(values in µg/L)						
Volatile Organics						
rinyl chloride	8J		33	45		
hloroethane			6 J	73		
ethylene chloride		3 J	66	73		5
cetone	2Ј		2Ј		8J	7 J
arbon disulfide	4 J	5 <i>J</i>	5 J			
,1-dichloroethane			39	53		
.,2-dichloroethene (total)			400D	390D		
hloroform					5	5
richloroethene			180	210D		
enzene			10	16		
etrachloroethene			97	150		
coluene	~-		10	12		
thylbenzene				3 J		
ylenes (total)			17	24		
emivolatile Organics						
di-n-butylphthalate					2Ј	

Table 4-2 (Cont.)

Sample Collection Information			Sam			
and Parameters	MW1	MW2	MW3	Duplicate	Blank 1	Blank 2
Analyte Detected	····					
(values in $\mu g/L$)						
aluminum	25,900		97.1B	110B		
arsenic	8.3B		4.8B	5.9B		
barium	195B	26.5B	173B	166B		
calcium	264,000	87,800	227,000	217,000		
chromium	58.3					
cobalt	20.5B		23.5	22.1B		
copper	86.1J	8.9ЈВ			32J	33.8J
iron	34,100	21JB	9,040	8,610	11.1ЈВ	26.3JE
lead	54.9JN+					2.8JBN
magnesium	119,000	37,400	63,500	62,400		
manganese	907	4.3B	2,750	2,660		
nickel	43			19B	- -	
potassium	9,660		7,680	7,920		
silver		4.2B				
sodium	136,000	4,760B	2,020,000	1,920,000	304B	290B
vanadium	68.7		7.8B	5.4B		
zinc	1,950J	65.9J	72.3J	119Ј	27.8Ј	26.9J

^{*} Insufficient quantity was obtained for measurement.

⁻⁻ Not detected.

Table 4-2 (Cont.)

COMPOUND QUALIFIERS	DEFINITION	INTERPRETATION
J	Indicates an estimated value.	Compound value may be semiquantitative.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.	Alerts data user to a possible change in the CRQL. Data is quantitative.
ANALYTE QUALIFIERS	DEFINITION	INTERPRETATION
N	Spike recoveries outside QC protocols, which indicates a possible matrix problem. Data may be biased high or low. See spike results and laboratory narrative.	Value may be quantitative or semi- quantitative.
+	Correlation coefficient for standard additions is less than 0.995. See review and laboratory narrative.	Data value may be biased.
В	Value is real, but is above instrument DL and below CRDL.	Value may be quantitative or semi- quantitative.
J	Value is above CRDL and is an estimated value because of a QC protocol.	Value may be semiquantitative.

Table 4-3
RESULTS OF CHEMICAL ANALYSIS OF
FIT-COLLECTED RESIDENTIAL WELL SAMPLES

Sample Collection Information	Sample Number				
and Parameters	RW1	Duplicate	RW2	RW3	Blank
Date	3/22/89	3/22/89	3/22/89	3/22/89	3/22/89
Time	0930	0930	1200	1030	1115
CLP Organic Traffic Report Number	EDL18	EDL19	EDL20	EDL21	EW178
CLP Inorganic Traffic Report Number	MEDA92	MEDA93	MEDA94	MEDA95	MEDA97
Temperature (°C)	8.0	8.0	9.0	10.0	-
Specific Conductivity (µmhos/cm)	390	390	490	510	_
Compound Detected					
(values in $\mu g/L$)					
Volatile Organics					
chloroform				2	
bromodichloromethane				0.8J	
Semivolatile Organics					
phenol		15	3	1Ј	2
anthracene	3			~-	~-
Analyte Detected					
(values in µg/L)					
barium	85.2	84.5	32.6B	57.2	
calcium	71,500	68,800	76,800	88,400	71.2B
chromium			32.4		
copper			29.2J	32.7J	52.4
iron	1,570	1,590	1,090		16.2B
magnesium .	30,700	30,100	33,900	39,100	13.8B
manganese	28.3	31.8	49.3	~-	3.8B
sodium	4,120	4,000	2,920	4,470	215B
zinc	13.8B	18.5B	43.8	54.3	19.4B

⁻⁻ Not detected.

COMPOUND QUALIFIER	DEFINITION	INTERPRETATION
(OMPOUND QUALIFIER	DEFINITION	INTERPRE

Indicates an estimated value. Compound value may be semiquantitative.

ANALYTE QUALIFIERS	DEFINITION	INTERPRETATION		
В	Value is real, but is above instrument DL and below CRDL.	Value may be quantitative or semi- quantitative.		
J	Value is above CRDL and is an estimated value because of a QC protocol.	Value may be semiquantitative.		

5. DISCUSSION OF MIGRATION PATHWAYS

5.1 INTRODUCTION

This section contains a discussion of data and information that apply to potential migration pathways and targets of TCL compounds and/or TAL analytes that possibly are attributable to the BML site.

The five migration pathways of concern discussed are groundwater, surface water, air, fire and explosion, and direct contact.

5.2 GROUNDWATER

The general geology of the area of the site consists of unconsolidated deposits of clay and silt from the surface to an average depth of 25 feet. These deposits overlie a sand and gravel deposit with traces of clay intermixed. The sand and gravel deposit is approximately 245 feet thick and tends to rise toward the ground surface along the eastern boundary of the site, so that 1 mile east of the site the deposit is actually only several feet from the surface. Approximately 270 feet below the sand and gravel deposit is a bedrock layer, the Galena-Platteville dolomite, which is hydrologically connected to the sand and gravel deposit (well logs are provided in Appendix E [IEPA 1981; Hooper no date]).

The unconsolidated glacial deposits of clay and silt do not appear to be continuous throughout a 3-mile radius of the site. According to water well records, the aquifer of concern in the 3-mile radius of the site is the sand and gravel deposit and the Galena-Platteville dolomite. Based on groundwater elevations in monitoring wells, as measured by FIT

and as suggested by surficial topography at the site, the likely direction of groundwater flow is toward the southeast.

TCL compounds and TAL analytes were detected in groundwater monitoring wells on-site. The concentrations of the TCL compounds detected in MW3 (vinyl chloride at 45 μ g/L, 1,1-dichloroethane at 53 μ g/L, 1,2-dichloroethene at 400 μ g/L, benzene at 16 μ g/L, tetrachloroethene at 150 μ g/L, and total xylenes at 24 μ g/L) were above the concentrations detected in the background monitoring well (assumed to be MW1). Vinyl chloride was also detected in MW1 at 8J μ g/L (see Table 4-2 for definition of J qualifier). TAL analytes detected in MW1 were soil constituents common to the area.

TCL compounds and TAL analytes were detected in soil samples collected on-site. The concentrations of TCL compounds (chloroethane at 31 $\mu g/kg$, 1,1-dichloroethane at 250 $\mu g/kg$, carbon tetrachloride at 29 $\mu g/kg$, toluene at 220 $\mu g/kg$, ethylbenzene at 46 $\mu g/kg$, styrene at 15 $\mu g/kg$, fluoranthene at 1,100 $\mu g/kg$, and total xylenes at 85 $\mu g/kg$) were all above the concentrations detected in the background soil sample, S7. All TCL compounds listed above were detected in soil sample S4, except fluoranthene, which was detected in soil sample S2.

An observed release of TCL compounds to groundwater at the site is documented, based on the following information.

- TCL compounds 1,1-dichloroethane and total xylenes were detected in both on-site soil samples and in downgradient monitoring well sample MW3. Neither of these two compounds was detected in the upgradient well sample.
- The landfilling process at the site potentially affects the direction of surface water flow. This may account for the TCL compounds detected in soil sample S4, which was collected approximately 700 feet south-southeast of monitoring well MW3.
- The BML site does not have a liner or leachate collection system to protect the groundwater from TCL compounds leaching from the landfill (Klint et al. 1989).

- The aquifer of concern consists of the moderately permeable sand and gravel deposit and the underlying Galena-Platteville dolomite. In the immediate vicinity of the site, the depth to the aquifer of concern is relatively shallow, approximately 25 feet.
- A potential source of the TCL compounds detected may be the diesel fuel tank, which, according to an employee of the landfill operator, was abandoned nearly full but has now leaked 75% of its contents.

The potential targets of groundwater contamination include approximately 16,500 persons residing within a 3-mile radius of the site who obtain drinking water from municipal or private wells drawing from the sand and gravel deposit or the underlying Galena-Platteville dolomite, which together constitute the aguifer of concern.

The city of Belvidere operates eight municipal wells. The closest to the site is Municipal Well #9, which is approximately 1 1/4 miles south-southwest of the site, and the most distant is Municipal Well #8, approximately 3 3/4 miles south-southwest of the site. Water from all eight wells is blended in a distribution system (Grimes 1988). Approximately 15,200 persons obtain drinking water from the Belvidere Municipal Water System on a continual basis.

According to Jim Grimes of the Belvidere Water Works, the city of Belvidere Municipal Water System serves residents within the city of Belvidere proper. A house count from a USGS topographic map of the area (USGS 1975, 1975a, 1975b, 1978), multiplied by 2.92, the 1980 Census persons-per-household average in Boone County (U.S. Bureau of the Census 1982), indicates that an estimated 1,300 persons reside within a 3-mile radius of the site but outside the area served by the city of Belvidere Municipal Water System. According to Illinois Department of Public Health well construction reports, these residents obtain drinking water from private wells screened in the aquifer of concern at depths ranging from approximately 40 to 500 feet. The nearest well to the site is located approximately 500 feet south of the site and provides water for approximately 100 residents.

5.3 SURFACE WATER

Surface water samples were not collected at the BML site because no continually flowing surface water exists on-site or in the immediate vicinity of the site.

The surface water nearest to the site is Beaver Creek, located approximately 1 1/4 miles northeast of the site. The potential for contaminants to migrate from the site to this tributary via overland flow is limited, based on the following information:

- The site is at a lower elevation than Beaver Creek; and
- Route 76 separates Beaver Creek from the BML site.

5.4 AIR

A release of potential contaminants to the air was not documented during the SSI of the BML site. During the reconnaissance inspection, FIT site-entry instruments (OVA 128, combination oxygen meter and explosimeter, hydrogen cyanide monitor, and radiation monitor) did not detect levels above background concentrations at the site in the breathing zone (E & E 1987). However, along surficial cracks in the top of the landfill, the OVA 128 did detect a concentration above background.

A potential does exist for windblown particulates to carry TCL compounds and TAL analytes from the site because TCL compounds and TAL analytes were detected in surface soils on-site and because vegetative cover is sparse in some areas of the site. According to a house count from USGS topographic maps of the site area (USGS 1975, 1975a, 1975b, 1978), multiplied by 2.92, the 1980 Census persons-per-household average for Boone County, the population within a 4-mile radius of the site is approximately 17,055 persons.

5.5 FIRE AND EXPLOSION

A slight potential exists for fire and explosion at the BML site. FIT on-site safety equipment (OVA 128 with charcoal filter) detected unknown concentrations of methane at the landfill surface. Other on-

site safety equipment (explosimeter and oxygen meter) did not register any readings.

This potential also exists due to the presence of the leaking diesel fuel storage tank on-site.

5.6 DIRECT CONTACT

According to federal, state, and local file information reviewed by FIT, there is no documentation of an incident of direct contact with TCL compounds and/or TAL analytes at the BML site.

FIT observed no signs of casual use of the site during the SSI, but there is a potential that the public may come into direct contact with TCL compounds and TAL analytes detected at the site. The potential for direct contact is based on the following information:

- TCL compounds have been detected at the site in soil samples collected from the ground surface;
- On-site landfilling may potentially expose site workers to TCL compounds; and
- Residents have access to the site to deposit waste on designated days.

According to a house count from USGS topographic maps of the area of the site (USGS 1975, 1975a, 1975b, 1978), multiplied by 2.92, the 1980 Census persons-per-household average in Boone County, the population within a 1-mile radius of the site is approximately 210 persons.

6. BIBLIOGRAPHY

- E & E, 1987, Quality Assurance Project Plan Region V FIT Conducted Site Inspections, Chicago, Illinois.
- Eldredge Engineering, May 5, 1986, Plans for Construction of County Farm Landfill, Boone County, Illinois.
- Grimes, Jim, February 24, 1988, Superintendent, Belvidere Water Works, Belvidere, Illinois, telephone conversation, contacted by Gerard Breen of E & E.
- Hooper, Louis T., no date, <u>Soils Report Subsurface Investigation</u>

 <u>Proposed Sanitary Landfill Belvidere, Illinois</u>, Layne-Western Company, Inc.
- IEPA, January 1981, Division of Land/Noise Pollution Control, <u>Belvidere</u>

 <u>Municipal Landfill #2</u>, by Rauf Piskin.
- ______, December 22, 1981a, Memorandum of Routine Inspection of <u>Belvidere Municipal Landfill #2</u>, U.S. EPA ID: ILD00060543, written by Jack Holzer.
- Assessment and Executive Summary, for Belvidere Municipal Landfill, Illinois, Site Identification Number ILD000605113, prepared by P. D. Lopinto, Rockford, Illinois.

- Klint, Carol, Craig Lawler, Pat Murphy, Ken Terrinoni, Fred Winterroth, March 20, 1989, Boone County Health Administrator, Director of Public Works, City Alderman, Administrative Coordinator, County Board Member, Belvidere, Illinois, site representative interview, conducted by William Perpich of E & E.
- Lawler, Craig, August 15, 1989, city of Belvidere Public Works

 Department, Director of Public Works, telephone conversation,
 contacted by William Perpich of E & E.
- U.S. Bureau of the Census, 1982, 1980 Census of Population, Volume I, Characteristics of the Population, Illinois.
- U.S. EPA, June 6, 1981, <u>Notification of Hazardous Waste Site</u>, form 8900-1, Site Identification Number ILD980606602, submitted by Apache Foam Products, Belvidere, Illinois.
- , February 12, 1988, Office of Solid Waste and Emergency Response, Pre-Remedial Strategy for Implementing SARA, Directive number 9345.2-01, Washington, D.C.
- USGS, 1975, Belvidere North Quadrangle, Illinois, 7.5 Minute Series: 1:24.000.
- ______, 1975a, Caledonia Quadrangle, Illinois, 7.5 Minute Series: 1:24,000.
- , 1975b, Cherry Valley Quadrangle, Illinois, 7.5 Minute Series: 1:24,000.
- _____, 1978, Bevidere South Quadrangle, Illinois, 7.5 Minute Series: 1:24,000.

3754:6

APPENDIX A

SITE 4-MILE RADIUS MAP

SDMS US EPA Region V

Imagery Insert Form

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

Unless oth	COLOR or RESOLUTION variations. erwise noted, these pages are available in monochrome. The source document page than the images. The original document is available for viewing at the Superfuenter. Specify Type of Document(s) / Comments:
	al Business Information (CBI). nent contains highly sensitive information. Due to confidentiality, materials with
	ways not assilable in CDMC. Was many assess the EDA Computered December Many
informatio	n are not available in SDMS. You may contact the EPA Superfund Records Managewith the third document. Specify Type of Document(s) / Comments:
Unscannab Oversized	ew this document.

APPENDIX B

U.S. EPA FORM 2070-13

APPENDIX C

FIT SITE PHOTOGRAPHS

SITE NAME: Belvidere Municipal Landfil #2 PAGE / OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3-22-89

TIME: /330

DIRECTION OF PHOTOGRAPH:

NE

WEATHER CONDITIONS:

20°F

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable): N/A

and scale house in background.

DATE: 3-22-89

TIME: _/300

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

Clear, Sunny

PHOTOGRAPHED BY:

Was Perpich

SAMPLE ID (if applicable):

to be copped in the spring of 1989.

SITE NAME: Belvidere Municipal Landfil #2 PAGE 2 OF 2D

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3-22-89

TIME: /300

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS: 20°K

clear, Sunny

PHOTOGRAPHED BY: Um Perpich

SAMPLE ID (if applicable): NA

Photograph from top of landfill at west end where active landfilling starts

DATE: 3-22-89

TIME: /3/0

DIRECTION OF PHOTOGRAPH: NE

WEATHER

CONDITIONS: 20°F

PHOTOGRAPHED BY:, Lum Parpich

SAMPLE ID (if applicable): NA

of landfill standing DESCRIPTION: in background. End loader covering refuse with duty cover.

FIELD PHOTOGRAPHY LOG SHEET SITE NAME: Belvidere Municipal Landfil #2 PAGE 3 OF 20 U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILOS843A DATE: 3-22-89 TIME: 1305 DIRECTION OF PHOTOGRAPH: JW WEATHER CONDITIONS: 200F Clear, Sunny PHOTOGRAPHED BY: lum Perpich SAMPLE ID (if applicable): from top of londfill of DESCRIPTION: dfilling area background. material in Also hetere landfilling area in background. DATE: 3-22-89 TIME: /305 DIRECTION OF PHOTOGRAPH: **VEATHER** CONDITIONS: 200F Cleor, Sunny PHOTOGRAPHED BY: Wm Perpich SAMPLE ID (if applicable):

lond filling area in foreground.

NA

SITE NAME: Belvidere Municipal Landfil #2 PAGE 4 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FJL05845A

DATE: 3-2/-89

TIME: 1000

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

dear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

DESCRIPTION:

Photograph of intersection between area

with final cop (right) and area to be capped in the spring of 1989 (left).

DATE: 3-21-89

TIME: 1040

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

clear , Sunny

Um Perpich

SAMPLE ID (if applicable):

DESCRIPTION: Photograph of area to be copped with final cover and stockpiled daily cover material in right of photograph.

SITE NAME: Belvidere Municipal Landfil #2 PAGE 5 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FIL05845A

DATE: 3-21-89

TIME: 1620

DIRECTION OF PHOTOGRAPH:

NW

WEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY: Wm Perpich

SAMPLE ID (if applicable):

NA

DESCRIPTION: Photograph of area to be capped in

spring of 1989 and methane collection pipes in right of photograph which were abandoned.

DATE: 3-22-89

TIME: /310

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

20°F

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

with stained soil along side roadway in center of photograph.

SITE NAME: Belvidere Municipal Landfill #2 PAGE 6 OF 20

U.S. EPA ID: ZLD006051/3 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3- 89

TIME: 1745

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID
(if applicable):

DESCRIPTION: Photograph taken from active fill area

showing death of of daily cover-

DATE: 3-21-89

TIME: 1740

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

dear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

N/A

DESCRIPTION:

Photograph taken from active till orac

of future land fill area.

PAGE 7 OF 20 SITE NAME: Belvidere Municipal Landfill #2

PAN: FILOS 845A U.S. EPA ID: ILDOGGOSI/3 TDD: F05-8902-021

DATE: 3-22-89

TIME: /320

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

200 F

claar, Sunny

PHOTOGRAPHED BY:

Um Pergich

SAMPLE ID (if applicable): NA

which was brought to land fill empty.

U.S. EPA ID: ZLDOOGOS113 TDD: FOS-8902-021 PAN: FILOS8451

DATE: 3-21-89

TIME: 1155

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

collected at the surface along the fence on the

DATE: 3-21-89

TIME: 1155

DIRECTION OF PHOTOGRAPH:

N

VEATHER
CONDITIONS:

Clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

DESCRIPTION: Perspective photograph of 51. Sample taken below erosion gully.

SITE NAME: Belvidere Municipal Landfil #2 PAGE 9 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FIL05845A

DATE: 3-21-89

TIME: 1215

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable): 5.2

at surface along the fence on the north side of landfill.

DATE: 3-21-89

TIME: 1215

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

clear, sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

Ja

DESCRIPTION: Perspective photograph of 52.

SITE NAME: Belvidere Municipal Landfil #2 PAGE 10 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3-21-89

TIME: 1440

DIRECTION OF PHOTOGRAPH:

NNE

WEATHER CONDITIONS:

dear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

along south slope of landfill in area of stained

DATE: 3-21-89

TIME: 1440

DIRECTION OF PHOTOGRAPH:

VEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID

(if applicable): 53

DESCRIPTION: Perspective photograph of 53

SITE NAME: Belvidere Municipal Landfil #2 PAGE // OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FJL05845A

DATE: 3-21-89

TIME: 1500

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable): 54

rollected at surface in area of stained soil.

DATE: 3-21-89

TIME: 1500

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

DESCRIPTION: Perspective photograph of 54.

SITE NAME: Belvidere Municipal Landfill #2 PAGE 12 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3-21-89

TIME: 1530

DIRECTION OF PHOTOGRAPH:

NW

WEATHER CONDITIONS:

30°F

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

at surface of landfill in area with erosion.

DATE: 3-21-89

TIME: 1530

DIRECTION OF PHOTOGRAPH:

NW

WEATHER
CONDITIONS:

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

DESCRIPTION: Parspective photograph of 55.

SITE NAME: Belvidere Municipal Landfil #2 PAGE 13 OF 20 U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILOS 843A

DATE: 3-21-89

TIME: 16/5

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS: 30°F

clear, Sunny

PHOTOGRAPHED BY: um Perpich

SAMPLE ID

(if applicable):

DESCRIPTION: close up photograph of 56. Sample collected at surface on slope at west end of landfill.

DATE: 3-21-89

TIME: 1615

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS: 30°F

clear, Sunny

PHOTOGRAPHED BY: um Perpich

SAMPLE ID (if applicable): 56

DESCRIPTION: Perspective photograph of 56.

SITE NAME: Belvidere Municipal Landfill #2 PAGE 14 OF 20

U.S. EPA ID: 71 DOG 05/13 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3-21-89

TIME: 1640

DIRECTION OF PHOTOGRAPH:

E

WEATHER CONDITIONS:

30°F

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

the background sample collected in the southeast

DATE: 3-21-89

TIME: 1640

DIRECTION OF PHOTOGRAPH:

E

WEATHER CONDITIONS:

30°F

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable): 57

DESCRIPTION: Perspective photograph of 37.

SITE NAME: Belvidere Municipal Landfil #2 PAGE 15 OF 20

U.S. EPA ID: ZLD00605/13 TDD: F05-8902-021 PAN: FILO5843A

DATE: 3-22-89

TIME: 930

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS: 20°F

dear, Sunny

PHOTOGRAPHED BY: um Perpich

SAMPLE ID (if applicable): MWI

close up photograph of MWI. DESCRIPTION:

DATE: 3-22-89

TIME: 930

DIRECTION OF PHOTOGRAPH:

VEATHER CONDITIONS: 20°K

clear, Sunny

PHOTOGRAPHED BY: Um Perpich

SAMPLE ID (if applicable): MWI

DESCRIPTION:

Perspective photograph of MWI

SITE NAME: Belvidere Municipal Landfill #2 PAGE /6 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FIL05845A

DATE: 3-21-89

TIME: /250

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS:

30°K

Clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

close up photograph of MW2.

DESCRIPTION:

DATE: 3-21-89

TIME: 1250

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS:

30°F

clear, Sunny

PHOTOGRAPHED BY:

SAMPLE ID (if applicable):

DESCRIPTION:

Perspective photograph of MW2.

SITE NAME: Belvidere Municipal Landfill #2 PAGE /7 OF 20

U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILO5845A

DATE: 3-21-89

TIME: 1530

DIRECTION OF PHOTOGRAPH:

N

WEATHER CONDITIONS: 300 F

clear Sunny

PHOTOGRAPHED BY: Um Perpich

SAMPLE ID (if applicable): MW3

DESCRIPTION: Close up photograph of MW3.

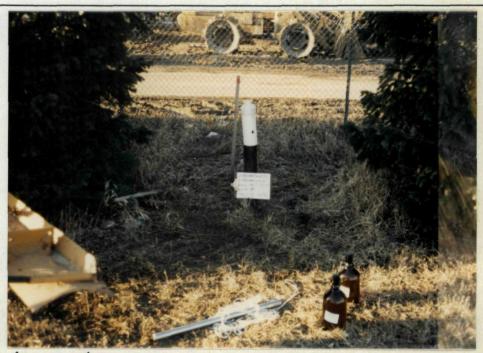
DATE: 3-21-89

TIME: 1530

DIRECTION OF PHOTOGRAPH:

WEATHER CONDITIONS: 30°F

Clear, Sunny

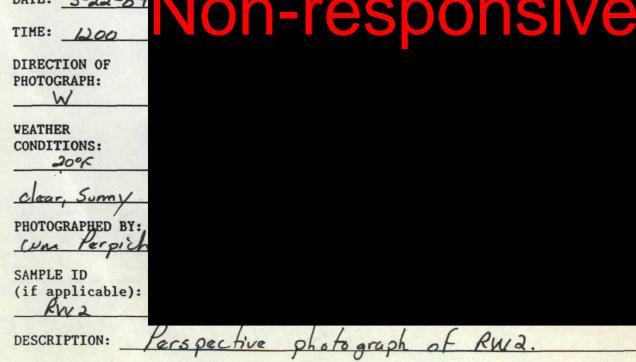

PHOTOGRAPHED BY: Lum Perpich

SAMPLE ID (if applicable): MW3

Perspective DESCRIPTION:

photograph of MW3. Photograph

taken after completion of sampling.


FIELD PHOTOGRAPHY LOG SHEET PAGE 18 OF 20 SITE NAME: Belvidere Municipal Landfil #2 U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILOS843A DATE: 3-22-89 930 TIME: DIRECTION OF PHOTOGRAPH: 5W WEATHER CONDITIONS: 2004 Claar, Sunny PHOTOGRAPHED BY: Nm Perpich SAMPLE ID (if applicable): RWI Close up photograph of RWI. DESCRIPTION: DATE: 3-22-89 Von-responsive 930 DIRECTION OF PHOTOGRAPH: SW **VEATHER** CONDITIONS: 20°F Clear, Sunny PHOTOGRAPHED BY:

DESCRIPTION: Perspective photograph of RW1.

Um Perpich

SAMPLE ID

	FIELD PHOTOGRA	PHY LOG SHEET		
SITE NAME: Belvidere	Munici pal	Landfill #:	2 PAGE 19	of 20
U.S. EPA ID: ZLDooGO	5/13 TDD: Fo.	5-8902-02	/ PAN: FI	105845
DATE: 3-22-89 TIME: /200	on-r	espo	onsi	ve
DIRECTION OF PHOTOGRAPH:				
veather conditions:				
Clear, Sunny PHOTOGRAPHED BY:				
SAMPLE ID				
(if applicable): RW 2				
DESCRIPTION:	up photo	graph of	Rwa.	
DATE: 3-22-89	on-r	espo	nnei	\/ \
TIME: 1200		COPI		V

FIELD PHOTOGRAPHY LOG SHEET SITE NAME: Belvidere Municipal Landfil #2 PAGE 20 OF 20 U.S. EPA ID: ZLD00605113 TDD: F05-8902-021 PAN: FILOS845A DATE: 3-22-89 1030 DIRECTION OF PHOTOGRAPH: N WEATHER CONDITIONS: 20°F Sunny PHOTOGRAPHED BY: Perpich SAMPLE ID (if applicable): Rw3 close up photograph of RW3 DATE: 3-22-89 n-responsi TIME: 1030 DIRECTION OF PHOTOGRAPH: WEATHER CONDITIONS: 20°F Sunny PHOTOGRAPHED BY: Um Pergich SAMPLE ID (if applicable): RW3 Perspective photograph of RWS. DESCRIPTION:

APPENDIX D

U.S. EPA TARGET COMPOUND LIST AND

TARGET ANALYTE LIST

QUANTITATION/DETECTION LIMITS

ADDENDUM A

$\begin{array}{c} \textbf{ROUTINE ANALYTICAL SERVICES} \\ \textbf{CONTRACT REQUIRED}_{\mathcal{I}} \ \textbf{DETECTION AND QUANTITATION LIHITS} \end{array}$

Contract Laboratory Program Target Compound List Quantitation Limits

COMPOUND	CAS #	VATER	SOIL SEDIMENT SLUDGE
Chloromethane	74-87-3	10 ug/L	10 ug/Kg
Bromomethane	74-83-9	10	10
Vinyl chloride .	75-01-4	10	10
Chloroethane	75-00-3	10	10
Methylene chloride	75-09-2	5	5
Acetone	67-64-1	10	5
Carbon disulfide	75 – 15 – 0	5	5 5
1,1-dichloroethene	75-35-4	5 5 5 5	5
1,1-dichloroethane	75-34-3	5	5 5 5
1,2-dichloroethene (total)		5	5
Chloroform	67-66-3	5	5
1,2-dichloroethane	107-06-2	5	5
2-butamone (MEK)	78-93-3	10	10 -
1,1,1-trichloroethane	71-55-6	5	5
Carbon tetrachloride	56-23-5	5	5
Vinyl acetate	108-05-4	10	10
Bromodichloromethane	75-27-4	5	5
1,2-dichloropropane	78-87-5	5	5
cis-1,3-dichloropropene	10061-01-5	5 5 5	5
Trichloroethene	79-01- 6	5	5
Dibromochloromethane	124-48-1		5
l,1,2-trichloroethane	79-00-5	5 5	5
Benzene	71-43-2		5
Trans-1,3-dichloropropene	10061-02-6	5	5
Bromoform	75-25- 2	5	5
4-Methy1-2-pentanone	108-10-1	10	10
2-Hexanone	591-78 -6	10	10
Tetrachloroethene	127-18-4	5	5
Colene	108-88-3	5	5
1,1,2,2-tetrachloroethane	79-34-5	5	5
Chlorobenzene	108-90-7	5	5
Ethyl benzene	100-41-4	5	5
Styrene	100-42-5	5	5
Kylenes (total)	1330-20-7	5	5

Table A
Contract Laboratory Program
Target Compound List
Semivolatiles Quantitation Limits

COMPOUND	CAS #	WATER	SOIL SEDIMENT SLUDGE
	OIIO N	WALLER	<u> </u>
Phenol	108-95-2	10 ug/L	330 ug/Kg
bis(2-Chloroethyl) ether	111-44-4	10	330
2-Chlorophenol	95-57-8	10	330
1,3-Dichlorobenzene	541-73-1	10	330
1,4-Dichlorobenzene	106-46-7	10	330
Benzyl Alcohol	100-51-6	10	330
1,2-Dichlorobenzene	95-50-1	10	330
2-Methylphenol	95-48-7	10	330
bis(2-Chloroisopropyl) ether	108-60-1	10	330
4-Methylphenol	106-44-5	10	330
N-Nitroso-di-n-dipropylamine	621-64-7	10	330
Hexachloroethane	67-72-1	10	330
Nitrobenzene	98-95-3	10	330
Isophorone	78-59-1	10	330
2-Nitrophenol	88-75-5	10	330
2,4-Dimethylphenol	105-67-9	10	330
Benzoic Acid	65-85-0	50	1600
bis(2-Chloroethoxy) methane	111-91-1	10	330
2,4-Dichlorophenol	120-83-2	10	330
1,2,4-Trichlorobenzene	120-82-1	10	330
Naphthalene	91-20-3	10	330
4-Chloroaniline	106-47-8	10	330
Hexachlorobutadiene	87-68-3	10	300
4-Chloro-3-methylphenol	59-50-7	10	330
2-Methylnaphthalene	91-57-6	10	330
Hexachlorocyclopentadiene	77-47-4	10	330
2,4,6-Trichlorophenol	88-06-2	10	330
2,4,5-Trichlorophenol	95-95-4	50	1600
2-Chloronaphthalene	91-58-7	10	330
2-Nitroaniline	88-74-4	50	1600
Dimethylphthalate	131-11-3	10	330
Acenaphthylene	208-96-8	10	330
2,6-Dinitrotoluene	606-20-2	10	330
3-Nitroaniline	99-09-2	50	1600
Acenaphthene	83-32-9	10	330
2,4-Dinitrophenol	51-28-5	50	1600
4-Nitrophenol	100-02-7	50	1600
Dibenzofuran	132-64-9	10	330
2,4-Dinitrotoluene	121-14-2	10	330
Diethylphthalate	84-66-2	10	330
4-Chlorophenyl-phenyl ether	7005-72-3	10	330

Table A
Contract Laboratory Program
Target Compound List
Semivolatiles Quantitation Limits

			SOIL SLUDGE
COMPOUND	CAS #	WATER	SEDIMENT
Fluorene	86-73-7	10 ug/L	330 ug/Kg
4-Nitroaniline	100-01-6	50	1600
4,6-Dinitro-2-methylphenol	534-52-1	50	1600
N-nitrosodiphenylamine	86-30-6	10	330
4-Bromophenyl-phenylether	101-55-3	10	330
Hexachlorobenzene	118-74-1	10	330
Pentachlorophenol	87-86-5	50	1600
Phenanthrene	85-01-8	10	330
Anthracene	120-12-7	10	330
Di-n-butylphthalate	84-74-2	10	330-
Fluoranthene	206-44-0	10	330
Pyrene	129-00-0	10	330
Butylbenzylphthalate	85-68-7	10	330
3,3'-Dichlorobenzidine	91-94-1	20	660
Benzo(a)anthracene	56-55-3	10	330
Chrysene	218-01-9	10	330
bis(2-Ethylhexyl)phthalate	117-81-7	10	330
Di-n-octylphthalate	117-84-0	10	330
Benzo(b)fluoranthene	205-99-2	10	330
Benzo(k)fluoranthene	207-08-9	10	330
Benzo(a)pyrene	50-32-8	10	330
Indeno(1,2,3-cd)pyrene	193-39-5	10	330
Dibenz(a,h)anthracene	53-70-3	10	330
Benzo(g,h,i)perylene	191-24-2	10	330

Table A
Contract Laboratory Program
Target Compound List
Pesticide and PCB Quantitation Limits

			SOIL SEDIMENT
COMPOUND	CAS #	WATER	SLUDGE
alpha-BHC	319-84-6	0.05 ug/L	8 ug/Kg
beta-BHC	319-85-7	0.05	8
delta-BHC	319-86-8	0.05	8
gamma-BHC (Lindane)	58-89-9	0.05	8
Heptachlor	76-44-8	0.05	8
Aldrin	309-00-2	0.05	8
Heptachlor epoxide	1024-57-3	0.05	8
Endosulfan I	959-98-8	0.05	8
Dieldrin	60-57-1	0.10	16
4,4'-DDE	72-55-9	0.10	16
Endrin	72-20-8	0.10	16
Endosulfan II	33213-65-9	0.10	16
4,4'-DDD	72-54-8	0.10	16 .
Endosulfan sulfate	1031-07-8	0.10	16
4,4'-DDT	50-29-3	0.10	16
ethoxychlor (Mariate)	72-43-5	0.5	80
Endrin ketone	53494-70-5	0.10	16
alpha-Chlordane	5103-71-9	0.5	80
gamma-chlordane	5103-74-2	0.5	80
Toxaphene	8001-35-2	1.0	160
AROCLOR-1016	12674-11-2	0.5	80
AROCLOR-1221	11104-28-2	0.5	80
AROCLOR-1232	11141-16-5	0.5	80
AROCLOR-1242	53469-21-9	0.5	80
AROCLOR-1248	12672-29-6	0.5	80
AROCLOR-1254	11097-69-1	1.0	160
AROCLOR-1260	11096-82-5	1.0	160

Table A
Contract Laboratory Program
Target Analyte List
Inorganic Quantitation Limits

COMPOUND	PROCEDURE	SOIL WATER	SEDIMENT SLUDGE
COMPOUND	TROCEDORE	AVIDI	SEODGE
Aluminum .	ICP	200 ug/L	40 mg/Kg
Antimony	Furnace	60	2.4
Arsenic	Furnace	10	2
Barium	ICP	200	40
Beryllium	ICP	5	1
Cadmium	ICP	5	1
Calcium	ICP	5000	1000
Chromium	ICP	10	2
Cobalt	ICP	50	10
Copper	ICP	25	5
Iron	Icp	100	20 -
Lead	Furnace	5	1
Magnesium	ICP	5000	1000
Manganese	ICP	15	3
Mercury	Cold Vapor	0.2	0.008
Nickel	ICP	40	8
Potassium	ICP	5000	1000
Selenium	Furnace	5	1
Silver	ICP	10	2
Sodium	ICP	5000	1000
Thallium	Furnace	10	2
Vanadium	ICP	50	10
Zinc	ICP	20	4
Cyanide	Color	10	2

ADDENDUM C

SPECIAL ANALYTICAL SERVICES DETECTION LIMITS

Drinking Water Samples

TABLE C SPECIAL ANALYTICAL SERVICES DRINKING WATER **VOLATILE QUANTITATION LIMITS**

PARAMETER	CAS #	DETECTION LIMIT IN REAGENT VATER	
Benzene	71-43-2	1.5 ug/L	
Bromodichloromethane	75-27-4	1.5	
Bromoform	75-25-2	1.5	
Bromomethane	74-83-9	1.5	
Carbon tetrachloride	56-23-5	1.5	
Chlorobenzene	108-90-7	1.5	
Chloroethane	75-00-3	1.5	
2-Chloroethyl vinyl ether	110-75-8	1.5	
Chloroform	67-66-3	1.5	3
Chloromethane	74-87-3	1.5	
Dibromochloromethane	124-48-1	1.5	
1.1-Dichloroethane	75-34-3	1.5	
1,2-Dichloroethane	107-06-2	1.5	
1,1-Dichloroethene	75-35-4	1.5	
Total-1,2-Dichloroethene	540-59-0	1.5	
1,2-Dichloropropane	78-87-5	1.5	
cis-1,3-Dichloropropene	10061-01-5	2	
trans-1,3-Dichlopropropene	10061-02-6	1	
Ethyl benzene	100-41-4	1.5	
Methylene chloride *	75-09-2	1	
1,1,2,2-Tetrachloroethane	79-34-5	1.5	
Tetrachloroethene	127-18-4	1.5	
Toluene *	108-88-3	1.5	
1,1,1-Trichloroethane	71-55-6	1.5	
1,1,2-Trichloroethane	79-00-5	1.5	
Trichloroethene	79-01-6	1.5	
Vinyl chloride	75-01-4	1.5	
Acrolein	107-02-8	25	
Acetone *	67-64-1	5	
Acrylonitrile	107-13-1	25	
Carbon disulfide	75-15-0	3	
2-Butanone	78-93-3	5	
Vinyl acetate	108-05-4	3 5 5 1.5	
4-Methyl-2-pentanone	108-10-1	1.5	
2-Hexanone	519-78-6	5	
Styrene	100-42-5	1	
Xylene (total)	1330-02-7	1.5	

Common laboratory solvents.
Blank limit is 5x method detection limit.

^() Values in parentheses are estimates. actual values are being determined at this time.

TABLE C (cont.) SAS DRINKING WATER SEMIVOLATILES QUANTITATION LIMITS

PARAMETER	CAS ‡	DETECTION LIMIT	
Aniline	62-53-3	1.5 ug/l	
Bis(2-chloroethyl)ether	111-44-4	1.5	
Phenol	108-95-1	2	
2-Chlorophenol	95-57-≟	2	
1,3-Dichlorobenzene	541-73-1	2	
1,4-Dichlorobenzene	106-46-	2	
1.2-Dichlorobenzene	95-50-1	2.5	
Benzyl alcohol	100-51-6	2	
Bis(2-chloroisopropyl)ether	39638-32-9	2.5	
2-Methylphenol	95-48-7	1	
Hexachloroethane	67-72-1	2	
n-Nitrosodipropylamine	621-64-7	1.5	
Nitrobenzene	98-95-3	2.5	
4-Methylphenol	106-44-5	1	
Isophorone	78-59-1	2.5	
2-Nitrophenol	88-75-5	2	
2,4-Dimethylphenol	105-67-3	2	
Bis(2-Chloroethoxy)methane	111-91-1	2.5	
2,4-Dichlorophenol	120-83-2	2	
1,2,4-Trichlorobenzene	120-82-1	2	
Naphthalene	91-20-3	2	
4-Chloroaniline	106-47-8	2	
Hexachlorobutadiene	87-68-3	2.5	
Benzoic Acid	65-85-0	20	
2-Methylnapthalene	91-57-6	2	
4-Chloro-3-methylphenol	59-50-7	1.5	
Hexachlorocyclopentadiene	77-47-4	2	
2,4,6-Trichlorophenol	88-06-2	1.5	
2,4,5-Trichlorophenol	95-95-4	1.5	
2-Chloronapthalene	91-58-7	1.5	
Acenapthylhene	208-96-8	1.5	
Dimethyl phthalate	131-11-3	1.5	
2,6-Dinitrotoluene	606-20-2	1	
Acenaphthene	83-32-9	1.5	
3-Nitroaniline	99-09-2	2.5	
Dibenzofuran	132-64-9	1	
2,4-Dinitrophenol	51-28-5	(15)	
2,4-Dinitrotoluene	121-14-2	i	

TABLE C (Cont.) SAS DRINKING WATER SEMIVOLATILE QUANTITATION LIMITS

•		DETECTION	
PARAMETER	CAS #	LIHIT	
Fluorene	86-73-7	1 ug/L	
4-Nitrophenol	100-02-7	1.5	
4-Chlorophenyl phenyl ether	7005-72-3	1	
Diethyl phthalate.	84-66-2	ī	
4,6-Dinitro-2-methylphenol	534-52-1	(15)	
1,2-Diphenylhydrazine	122-66-7	1	
n-Nitrosodiphenylamine *	86-30-6	_	
Diphenylamine *	122-39-4	1.5	
4-Nitroaniline	100-01-6	3	
4-Bromophenyl-phenylether	101-55-3	1.5	
Hexachlorobenzene	118-74-1	1.5	
Pentachlorophenol	87-86-5	2	
Phenan threne	85-01-8	1	
Anthracene	120-12-7	2.5 -	
di-n-Butyl phthalate	84-74-2	2	
Fluoranthene	206-44-0	1.5	
Pyrene	129-00-0	1.5	
Butyl benzyl phthalate	85-68-7	3.5	
Chrysene **	218-01-9		
Benzo(A)Anthracene **	56-55-3	1.5	
bis(2-ethylhexyl)phthalate	117-81-7	1	
di-n-Octyl phthalate	117-84-0	1.5	
Benzo(b)fluoranthene ***	205-99-2		
Benzo(k)fluoranthene ***	207-08-9	1.5	
Benzo(a)pyrene	50-32-8	2	
Indeno(1,2,3-cd)pyrene	193-39-5	3.5	
Dibenzo(a,h)anthracene	53-70-3	2.5	
Benzo(g,h,i)perylene	191-24-2	4	
2-Nitroaniline	88-74-4	1	

^{*} These two parameters are reported as a total.

Note: Limits are for reagent water.

^{**} These two parameters are reported as a total.

^{***} These two parameters are reported as a total.

^() Values in parentheses are estimates.

The actual values are being determined at this time.

TABLE C (Cont.)
SAS DRINKING WATER
PESTICIDE AND PCB QUANTITATION LIMITS

		DETECTION	
PARAMETER	CAS #	LIMIT	······
Aldrin	309-00-2	0.005 ug/L	
alpha BHC	319-84-6	0.010	
beta BHC	319-85-7	0.005	
delta BHC .	319-86-8	0.005	
gamma BHC (Lindane)	58-89-9	0.005	
alpha-Chlordane	5103-71-9	0.020	
gamma-Chlordane	5103-74-2	0.020	
4,4'-DDD	² 72-54-8	0.020	
4,4'-DDE	72-55-9	0.005	
4,4'~DDT	50-29-3	0.020	
Dieldrin	60-57-1	0.010	
Endosulfan I	959-98-8	0.010	
Endosulfan II	33213-65-9	0.010	
Endosulfan sulfate	1031-07-8	0.10	
Endrin	72-20-8	0.010	
Endrin Aldehyde	7421-93-4	(0.030)	
Endrin Ketone	53494-70-5	0.030	
Heptachlor	76-44-8	0.030	
Heptachlor Epoxide	1024-57-3	0.005	
4,4'-Methoxychlor	72-43-5	0.020	
Toxaphene	8001-35-2	0.25	
Aroclor-1016	12674-11-2	0.10	
Aroclor-1221	11104-28-2	0.10	
Aroclor-1232	11141-16-5	0.10	
Aroclor-1242	53469-21-9	0.10	
Aroclor-1248	12672-29-6	0.10	
Aroclor-1254	11097-69-1	0.10	
Aroclor-1260	11096-82-5	0.10	

^() Values in parentheses are estimates.
Actual values are being determined at this time.

Note: Limits are for reagent water.

TABLE C (Cont.) SAS DRINKING WATER INORGANIC DETECTION LIMITS

		DETECTION	
PARAMETER	PROCEDURE	LIMIT	
Aluminum	ICP	100	
Antimony	GFAA	5	
Arsenic	GFAA	5	
Barium	ICP	50	
Beryllium	. ICP	5	
Cadmium	GFAA	0.5	
Calcium	ICP	1000	
Chromium	ICP	10	
Cobalt	ICP	10	
Copper	ICP	10	
Iron	ICP	100	
Lead	GFAA	2	
Magnesium	ICP	1000	
Manganese	ICP	10	
Mercury	Cold Vapor	0.2	
Nickel	ICP	20	
Potassium	ICP	2000	
Selenium	GFAA	2	
Silver	ICP	5	
Sodium	ICP	1000	
Thallium	GFAA	2	
Tin	ICP	40	
Vanadium	ICP	10	
Zinc	ICP	20	
Cyanide	Colorimetric	10	

Note: The above list may or may not contain compounds that are routinely analyzed at CRL for low level detection limits for drinking water.

See inorganic Routine Analytical Services (RAS) for related CAS #.

ADDENDUM D

SPECIAL ANALYTICAL SERVICES DETECTION LIMITS

High Concentration Samples

TABLE D
SAS HIGE CONCENTRATION
VOLATILES DETECTION LIMITS

		DETECTION	
PARAMETER	Cas #	LIMIT	
Benzene	71-43-2	2.5 mg/Kg	1
Bromodichloromethane	75-27-4	2.5	
Bromoform	75-25-2	2.5	'
Bromomethane .	74-83-9	5.0	
Carbon tetrachloride	56-23-5	2.5	
Chlorobenzene	108-90-7	2.5	
Chloroethane	75-00-3	5.0	
2-Chloroethylvinylether	110-75-8	5.0	
Chloroform	67-66-3	2.5	
Chloromethane	74-87-3	5.0	
Dibromochloromethane	124-48-1	2.5	
1,2-Dichloropropane	78-87 <i>-</i> 5	2.5	
1,2-Dichloroethane	107-06-2	2.5	
1,1-Dichloroethene	75-35-4	2.5 -	
1-1-Dichloroethane	75-34-3	2.5	
Total-1,2-Dichloroethene	540-59-0	2.5	
1,2-Dichloropropane	78-87 - 5	2.5	
cis-1,3-Dichlopropropene	10061-01-5	2.5	
trans-1,3-Dichlopropropene	10061-02-6	2.5	
Ethyl benzene	100-41-4	2.5	
Methylene chloride	75-09-2	2.5	
1,1,2,2-Tetrachloroethane	79-34-5	2.5	
Tetrachlorethene	127-18-4	2.5	
Toluene	108-88-3	2.5	
1,1,1-Trichloroethane	71-55-6	2.5	
1,1,2-Trichloroethane	79-00-5	2.5	
Trichloroethene	79-01-6	2.5	
Vinyl chloride	75-01-4	5.0	
Acetone	67-64-1	5.0	
Carbon disulfide	75-15-0	2.5	
2-Butanone	78 –93–3	5.0	
Vinyl acetate	108-05-4	5.0	
4-Methyl-2-pentanone	108-10-1	5.0	
2-Hexanone	591-78-6	5.0	
Styrene	100-42-5	2.5	
Xylenes	1330-02-7	2.5	

^{*} o-xylene and p-xylene are reported as a total.

TABLE D (Cont.) SAS HIGH CONCENTRATION SEMIVOLATILES DETECTION LIMITS

		DETECTION	
PARAMETER	CAS #	LIHIT	
Bis(2-chloroethyl)ether	111-44-4	20	
Phenol	108-95-2	20 mg/Kg	
2-Chlorophenol	95-57-8	20 mg/kg 20	
1,3-Dichlorobenzene	541-73-1	20	
1,4-Dichlorobenzene	106-46-7	20	
1,2-Dichlorobenzene	95-50-1	20	
Benzyl alcohol	100-51-6	20	
bis(2-chloroisopropyl)ether	108-60-1	20	
2-Methylphenol	95-48-7	20	
Hexachloroethane	67-72-1	20	
N-Nitrosodipropylamine	621-64-7	20	
Nitrobenzene	98-95-3	20	
4-Methylphenol	106-44-5	20	
Isophorone	78-59-1	20	
2-Nitrophenol	88-75-5	20	
2,4-Dimethylphenol	105-67-9	20	
bis(2-chloroethoxy)methane	111-91-1	20	
2,4-Dichlorophenol	120-83-2	20	
1,2,4-Trichlorobenzene	120-82-1	20	
Naphthalene	91-20-3	20	
4-Chloroaniline	106-47-8	20	
Hexachlorobutadiene	87-68-3	20	
Benzoic acid	65-85-0	100	
2-Methylnapthalene	91-57-6	20	
4-Chloro-3-methylphenol	59-50-7	20	
Hexachlorocyclopentadiene	77-47-4	20	
2,4,6-Trichlorophenol	88-06-2	20	
2,4,5-Trichlorophenol	95-95-4	100	
2-Chloronaphthalene	91-58-7	20	
Acenapthylene	208-96-8	20	
Dimethyl phthalate	131-11-3	20	
2,6-Dinitrotoluene	606-20-2	20	
Acenaphthene	83-32-9	20	
2-Nitroaniline	88-74-4	100	
3-Nitroaniline	99-09-2	100	
Dibenzofuran	132-64-9	20	
2,4-Dinitrophenol	51-28-5	100	
2,4-Dinitrotoluene	121-14-2	20	

TABLE D (Cont.) SAS HIGH CONCENTRATION SEMIVOLATILES DETECTION LIMITS

		DETECTION	
PARAMETER	CAS #	LIMIT	
Fluorene	86-73-7	20 mg/kg	
4-Nitrophenol	100-02-7	100	
4-Chlorophenyl phenyl ether	7005-72-3	20	
diethyl phthalate	84-66-2	20	
4,6-Dinitro-2-methylphenol	534-52-1	100	
1,2-Diphenylhydrazine	122-66-7		
n-Nitroso diphenylamine *	86-30-6	20	
Diphenylamine *	122-39-4	,	
4-Nitroaniline	100-01-6	100	
4-Bromophenyl phenyl ether	101-55-3	20	
Hexachlorobenzene	118-74-1	20	
Pentachlorophenol	87-86-5	100	
Phenanthrene	85-01-8	20	
Anthracene	120-12-7	20	
di-n-Butyl phthalate	84-74-2	20	
Fluoranthene	206-44-0	20	
Pyrene	129-00-0	20	
Butyl benzyl phthalate	85-68-7	20	
Chrysene	218-01-9	20	
Benzo(a)anthracene	56-55-3	20	
bis(2-ethylhexyl)phthalate	117-81-7	20	
di-n-octyl phthalate	117-84-0	20	
Benzo(b)fluoranthene	205-99-2	20	
Benzo(k)fluoranthene	207-08-9	20	
Benzo(a)pyrene	50-32-8	20	
Indeno(1,2,3-cd)pyrene	193-39-5	20	
Dibenzo(a,h)anthracene	53-70-3	20	
Benzo(g,h,i)perylene	191-24-2	20	
2-Nitroaniline	88-74-4	100	
3,3'-Dichlorobenzidine	91-94-1	40	
•			

^{*} These two parameters are reported as a total.

Note: Limits are for reagent water.

^() Values in parentheses are estimates.
The actual values are being determined at this time.

TABLE D (Cont.) SAS HIGH CONCENTRATION PESTICIDE AND PCB DETECTION LIMITS

CAS #	LIMIT	
	PIUII	
309002	20 m~/V~	
		•
	309-00-2 319-84-6 319-85-7 319-86-8 58-89-9 57-74-9 5103-71-9 5103-74-2 72-54-8 72-55-9 50-29-3 60-57-1 959-98-8 33213-65-9 1031-07-8 72-20-8 7421-93-4 53494-70-5 76-44-8 1024-57-3 72-43-5 8001-35-2 27323-18-8 2051-60-7 2051-61-8 25429-29-2 26601-64-9 28655-71-2 55722-26-4 53742-07-7 2051-24-3 2051-62-9 12674-11-2 1104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	319-84-6 20 319-85-7 20 319-86-8 20 58-89-9 20 57-74-9 20 5103-71-9 20 5103-74-2 20 72-54-8 20 72-55-9 20 50-29-3 20 60-57-1 20 959-98-8 20 33213-65-9 20 1031-07-8 20 72-20-8 20 7421-93-4 20 53494-70-5 20 76-44-8 20 1024-57-3 20 72-43-5 20 8001-35-2 50 27323-18-8 100 2051-60-7 100 2051-61-8 100 25429-29-2 100 26601-64-9 100 28655-71-2 100 57722-26-4 200 53742-07-7 200 2051-62-9 100 1104-28-2 10 11141-16-5 10 53469-21-9 10

TABLE D (Cont.) SAS HIGH CONCENTRATION INORGANIC DETECTION LIMITS

		DETECTION	
PARAMETER	CAS #	LIMITS	
	7/22 22 5		
Aluminum	7429-90-5	400 mg/kg	
Antimony	7440-36-0	20	
Arsenic .	7440-38-2	20	
Barium	7440-39-3	120	
Beryllium	7440-41-7	40	
Cadmium	7440-43-9	10	
Calcium	7440-70-2	800	
Chromium	7440-47-3	30	,
Cobalt	7440-48-4	200	
Copper	7440-50-8	40	
Iron	7439-89-6	200	
Lead	7439-92-1	100	
Lithium		•	
Magnesium	7439-95-4	800	
Manganese	7439-96-5	40	
Mercury	7439-97-6	0.3	
Molybdenum		40	
Nickel	7440-02-0	40	
Potassium	7440-09-7		
Selenium	7782-49-1	20	
Silicon		800	
Silver	7440-22-4	40	
Sodium	7440-23-5	4000	
Strontium			
Thallium	7440-28-0	400	
Titanium	7 1.10 20 0	400	
Tin		100	
Vanadium	7440-62-2	200	
Yttrium	7 1 10 02 2	200	
Zinc	7440-66-6	40	
Cyanide	7440-00-0	1.5	
Sulfide		2.5	
Conductivity		3.0 uhmos/cm	
Conductivity		J.O GIIMOS/CE	

Note: Compounds with detection limits are analyzed by this method.

Compounds without detection limits can be analyzed by a special SAS request.

SC = Specific conductance value

APPENDIX E

WELL LOGS OF THE AREA OF THE SITE

EAU OF ENVIRONMENTAL HEALTH, 535 1701. DO F T DETACH GEOLOGICAL/W DE PROPERTELL LOCATION.	ATER			
GEOLOGICAL AND WATER	LOG 1 SURVEYS W	. (ELL RE	COF	RD
10. Property owner BENNETS	Comp.	leted 4	-6-7	78
lon-responsive				
Driller JESSIE BEAM	License Date	No. 22	-57	
11. Permit No. 70975 12. Water from SAND & CRIVE	Date 13. Count	ty Boo	NE	
or depth L to L.5 ft.	Sec.	14		
14 Screen: Diam. 4/ in.	Twp.	HUN.	1	
Length: 4 ft. Slot 25	Rge.	3E.		
15. Casing and Liner Pipe	Elev.			
Diam. (in.) Kind and Weight	From (Ft.)	To (Ft.)		SHOW ATION IN
5 15'00 BLACK	0	61	SECT	ION PLAT
				#8,Stanley ates Subd.
				SW NW
16. Size Hole below casing:	in.			rmit)
17. Static level 30 ft. below can above ground level. Pumping le				ft.
	Act To It.		UVILLO	
gpm for hours. Sub- pu				
gpm for	mp set at			DEPTH OF BOTTOM
18. FORMATIONS PASSED THROU	mp set at	50'		DEPTH OF
18. FORMATIONS PASSED THROU	mp set at ! JGH	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH	mp set at ! JGH	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50'		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-C-RAY	mp sat at !	50' THICK!		DEPTH OF
18. FORMATIONS PASSED THROUGH CLAY SAND & GRAVE C CLAY-C-RAY SAND & C-RAVE C (CONTINUE OF SEPARATE SHEET I	mp sat at ! JGH F NECESSARY	50' THICK!	3 3 3	DEPTH OF BOTTOM S.S. 4.S. 5.2. C.S.
18. FORMATIONS PASSED THROUGH CLAY SAND & C-RAUF C CLAY-G-RAY SAND & C-RAUF C	mp sat at ! JGH F NECESSARY	THICKE	3 3 3	DEPTH OF BOTTOM S.S. 4.S. 5.2. C.S.
18. FORMATIONS PASSED THROUGH CLAY SAND & GRAVE C CLAY-C-RAY SAND & C-RAVE C (CONTINUE OF SEPARATE SHEET I	mp sat at ! JGH F NECESSARY	TE C	3 3 3	DEPTH OF BOTTOM S.S. 48. 52. 6.5

REQUESTED AND MAIL ORIGINAL TO STATE
MISUMER HEALTH PROTECTION, 535 WEST
2741. DO N. DETACH G. OGICAL/WATER
DE PROPER WELL LOCATION.

GEOLOGICAL AND WATER SURVEYS WELL RECORD

0. Propert	-						
-responsiv		al Makeau	4 41/11	2.1		72.	401
Driller	WEFFE	N MEKINI	YEX Licen	se N .سم	ہے۔ہ د دد ہ	2 . 0	20/
II. Permit	No. 2012	245	Date _			- O	<u> </u>
iz. Water I	iom - Nil	DYGRAYE	13. Cod	mty.	70		
at dept	h_40 to 1	<u>6.8_ft.</u>	Sec	٠ _	13.6	bel	111
14. Screen	کب . Diam	in.	Tw	p. <u>ح</u>	1411		
Length	:_ <u>-1ft</u> .	Slot 20	Rge	ئد .:	3E	. Ի	
			Ele	v			1-1-1
15. Casing	and Liner	Pipe				L	لسلسك
Diem. (in.)	Kind	and Weight	From (F1.)	Tu	(Ft.)	١.,	SHOW
.5	STE	F/	0	1	4	BEC	TION PI
			1	1		swy	שעש
			 	╂			
لسمسيا			ــــــــــــــــــــــــــــــــــــــ			•	
			in.				
0.0		II below cou	HAR TOO WITH				
ahave		_ft. below car					
	ground leve	l. Pumping le					
		l. Pumping le					g et <u>3</u> 2
gpm fo	ground leve	l. Pumping le	vol_£0_ft	. wh		mpin	
gpm fo	ground lever 2 hou	l. Pumping le irs.	vol_£0_ft	. wh	еп ри Тніск	mpin	g et <u>3</u> 2
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	d. Pumping lears. PASSED THROU	vol_£0_ft	. wh	еп ри Тніск	ENESS	DEPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	ground leven 2 how corrections	I. Pumping lears. PASSED THROU	vol_£0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	TOP	I. Pumping lears. PASSED THROUSOIL RAVEL	W1_#0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	TOP	I. Pumping lears. PASSED THROU	W1_#0_ft	. wh	THICK	ENESS	PLPTH BOTTO
gpm fo	TOP	I. Pumping lears. PASSED THROUSE. SOIL RATE SHEET IF	VOI 40 ft	. wh	THICK	ENESS	DEPTH BOTTO
gpm fo	TOP	I. Pumping lears. PASSED THROUSOIL RAVEL	VOI 40 ft	. wh	THICK	ENESS	DEPTH BOTTO

AL /	ATER S	URVEYS SECTIO	N. BE SURE	TÓ	•	
			LL LO			Y
GEULOGICAL AND WATER SURVEYS WELL RECORD						
Boo	ie Cou	nty Home		Complet	.ed 12-2	(2 - 69 -
10.	Propert	y owner Poss	or Count	y nome	. Well No.	
	Addres	s <u>PC/VICE</u>	Te Jell	Licene	No 9	2.3.5.0
11	Permit	No. 8646	,	Date _	Nov.31	969
12.	Water f	1,W./;art No. 2646 from Sand.	stone	13. Cou	nty <u><i>800.</i></u>	ne
		th to		Sec.		
14.		: Diam		Twp		
	Length	:ft. Slo	·t	Rge Ele		
15.	Casing	and Liner Pip	e	E16,	v	
	m. (in.)	Kind and	Weight	From (Ft.)	To (Ft.)	SHOW LOCATION IN
8	, //	Wt.St. T.C.	26	+151	2876	SECTION PLAT
C	ement	arouted 5'	to 76'.	driller		500'S Line, 500'W Line,
						NE (Permit)
16.	Size H	ole below casi	ng: 8	in.		
17.	Static	leve 10 -5 1t.	below casi	ng top whi	ch is	/5ft.
	above	ground level. r <u>/2. </u>	Pumping lev	el //_ it	. when pu	mping at 330
		ORMATIONS PA		-11	тніск	· ·
18.				<i></i>	TRICK	NESS DEPTH OF BOTTOM.
		11 Grave		·	4	P 4
	Y€ c	our Clay, Go	-avel	 	2,	1 25'
	Gray	Clay Gr	ave /			32'
	c/ay	sand, Gr	-avel	····	1/-	3 145"
	Fin	esand	<u>-</u>		9	5 240'
	Cem	ented (bravel	······································	3	0 270'
_	672	y Limest	one		4	0 310'
_	Glen	wood			ري	333
	3 7 ds 1		J'g vart	,		520'
(C	טאנדאס	E ON SEPARAT	E SHEET IF	NECESSARY	<u>0</u>	_
SIG	NED	DEAL TIME	7	D/	TE . C	2.301969
_	. [];	[CO	UNIY No.		S. S.	#56690
Dr	<i>ול 1/1 ו</i> משיטטי	g Sampte.	ssent 7	Orba	ina \mathcal{I}	114, 111 22
4	× - '	•				: /+=/+/\

PROPER ""	LL LOCATION	1.63		
	OGICAL AND WATER S	Connle	LL RECOF	·
	y owner Him Clini	y to v	ell Ng	36-14
on-respons	olve			-1462
Driller	XXIVI VILLE	License	0. <u>- 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 </u>	74
		Date	1300	-/
12. Vater f	Formation Formation	13. County	esponsive	
at dept	h toft.	Se		
14. Screen:	: Diom. 3 in.	T		
Length	: 4 ft. Slot 0.20	R gs Elev		
15. Casing	and Liner Pipe			إللا
Diam. (in.)	, Kind and Weight	From (Pt.) To	(F1.) LO	EATION INC
5	15/5/6 17:06	0 1	P.O. BECT	TION PLAT
				SW NW
<u> </u>		 {-	(per	rmit)
L		<u> </u> !		
16. Size H	ole below casing:	in.		•
17. Static	level 22 ft. below cost	ng top which	18	
above	ground level. Pumping lev	e <u>につ</u> it. w	hen pumpino	1 of <u>42</u>
	•			
gpm for	•	sible pump		
gpm for	•	sible pump		0'
gpm for	r <u>5</u> hours. Submers	sible pump	set at 8	0'
gpm for	r <u>5</u> hours. Submers	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm for	PORYATIONS PASSED THROUGH	sible pump	THICKNESS	0'
gpm fo	PORYATIONS PASSED THROUGH	sible pump	### ### ##############################	DEPTH OF ROTTOM 10 25 45 75 86 2
gpm for	rongations passed through	sible pump	THICKNESS	DEPTH OF ROTTOM 10 25 45 75 86 2
gpm fo	rongations passed through	NECESSARY)	### at 80 THICKNESS 10 15 -20 30 11 11 11 11 11 11 1	DEPTH OF ROTTOM 10 25 45 75 86 2
Gpm for	rongations passed through	sible pump	### at 80 THICKNESS 10 15 20 30 11 11 11 11 11 11 1	DEPTHOF 10 25 45 75 86
gpm for	rongations passed through	NECESSARY)	### at 80 THICKNESS 10 15 -20 30 11 11 11 11 11 11 1	DEPTHOF 10 25 45 75 86

T44N R3E

(8811-60M-4-69) 14-

ILLINOIS GEOLOGICAL SURVEY, URBANA

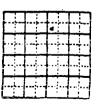
1 ILLINOIS GEOLOGICAL SURVEY, URBANA

ILLINOIS GEOLOGICAL SURVEY, URBANA						
EST BORING	y Settem	Thickness	TIST BORING	Thinkness	Top	9-83-0-
WELL LOG 4	j		WELL LOG 5			An commercial
ark brown silty chy tepsoil ary still red brown silty clay,	.0 0.6	0	Dark brown sandy silty elay with grave Stiff brown silty elay, trace sand Medium dense brown fine to medium sand)	0.0 2.5 8.0	2.5 8.0 18.0
and red brown silty clay trace po with silt layers	.6 8.0 .0 18.0	1 1	Loose to medium dense medium to course mand with gravel Medium dense gray medium to course		18.0	33.0
my dense red brown elayey sandy trace gravel my dense gray clayey sandy silt	33.0	t	sand with gravel Very stiff gray silty olay with sand and gravel		33.0 40.5	40.5
trace gravel mose medium to ecorse send with	3.0 49.5 3.5 51.0		Medium dense gray medium to course same with gravel		42.0	51.0
ottom of boring	51.0		Bottom of boring			51.0
						gad or
roposed land fill site			*Proposed land fill site			ed control
roposed land fill site			*Proposed land fill site			

COURTY

COMPANY FARM DATE DRILLED

Layne-Western Co.


Boone County Farm* January 12, 1972

COUNTY NO. 572

Company

AUTHORITY ELEVATION LOCATION

An.1250'N line,2500'E line of ME

FARM BOOME COUNTY FROM HE. 5

PATE BRILLED JENUARY 11, 1972 COUNTY HE. 571

AUTHORITY COMPANY

ELEVATION

LOCATION

An. 500: W Time 1000: E Time of

Ap. 500' H line, 1900'E line of HE BOOME

WELL LOG 7

WELL NO. 9, finished in sand and gravel, was completed in June 1969 to a depth of 120 ft by the Layne-Western Co., Aurora. The well is located on Beloit Road near Hulstedt's corner, approximately 2540 ft S and 200 ft E of the NW corner of Section 23, T44N, R3E. The land surface elevation at the well is approximately 785 ft.

A drillers log of Well No. 9 follows:

	Thickness	Depte
Strata	(ft)	(fr)
Black top soil	4	4
Yellow fine to coarse sand, some gravel	51	55
Gray fine to coarse sand and gravel, boulders	40	95
Brown clay with gravel intermixed	9	104
Brown sticky clay	1	105
Brown fine to medium sand, little gravel		113
Gray medium to coarse gravel and coarse sand	7	120
Brown clay and gravel and gray fine sand	2	122

A 48-in. diameter hole was drilled to a depth of 10 ft and finished 36 in. in diameter from 10 to 122 ft. The well is eased with 16-in. galvanized wrought iron pipe from 2 ft above land surface to a depth of 70 ft, 16-in. screen from 70 to 90 ft, 16-in. galvanized wrought iron pipe from 90 to 115 ft, and finished with 16-in. screen from 115 to 120 ft. The screened sections are both No. 90 slot Johnson stainless steel wire wound screens. The annulus is filled with torpedo sand and bentonite from 0 to 32 ft, with cement grout from 32 to 35 ft, and with 50 tons of No. 3 Muscatine gravel from 35 to 122 ft.

A production test was conducted by the driller on June 4, 1969. After 12 hr of pumping at a rate of 1574 gpm, the drawdown was 10.5 ft from a nonpumping water level of 23.0 ft below land surface.

In September 1970, the well reportedly produced 1935 gpm with a drawdown of 13 ft from a nonpumping water level of 22 ft.

The pumping equipment presently installed is a 13-in. Byron Jackson water lubricated line-shaft turbine pump (Serial No. 691C0245) set at 60 ft, rated at 1250 gpm at about 300 ft TDH, and powered by a 125-hp 1770 rpm General Electric motor (Model No. 5K6268XH3A, Serial No. GEJ702117). The well is equipped with 60 ft of airline.

The following mineral analysis made by the Environmental Protection Agency (Lab. No. 02974) is for a water sample from the well collected November 30, 1971.